A simple resampling method by perturbing the minimand

被引:223
作者
Jin, ZZ
Ying, ZL
Wei, LJ
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
基金
美国国家卫生研究院;
关键词
bootstrap; heteroscedastic regression; L-p norm; resampling method; truncated regression; U-process;
D O I
10.1093/biomet/88.2.381
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Suppose that under a semiparametric setting an estimator of a vector of parameters of interest is obtained by optimising an objective function which has a U-process structure. The covariance matrix of the estimator is generally a function of the underlying density function, which may be difficult to estimate well by conventional methods. In this paper, we present a simple resampling method by perturbing the objective function repeatedly. Inferences of the parameters can then be made based on a large collection of the resulting optimisers. We illustrate our proposal by three examples with a heteroscedastic regression model.
引用
收藏
页码:381 / 390
页数:10
相关论文
共 17 条
[1]   LIMIT-THEOREMS FOR U-PROCESSES [J].
ARCONES, MA ;
GINE, E .
ANNALS OF PROBABILITY, 1993, 21 (03) :1494-1542
[2]  
Davidson A. C., 1997, BOOTSTRAP METHODS TH
[3]  
Efron B., 1993, INTRO BOOTSTRAP, V1st ed., DOI DOI 10.1201/9780429246593
[4]  
Efron B., 1982, SOC IND APPL MATH CB, V38, DOI [10.1137/1.9781611970319, DOI 10.1137/1.9781611970319]
[5]  
Fitzenberger B., 1997, HANDB STAT, V15, P405
[6]  
Hettmansperger T. M., 2010, Robust nonparametric statistical methods, V2
[7]   The estimating function bootstrap [J].
Hu, FF ;
Kalbfleisch, JD .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (03) :449-481
[8]  
*IMSL, 1991, STAT LIBRARY US MAN
[9]   An interior point algorithm for nonlinear quantile regression [J].
Koenker, R ;
Park, BJ .
JOURNAL OF ECONOMETRICS, 1996, 71 (1-2) :265-283
[10]  
KOENKER RW, 1987, APPL STAT-J ROY ST C, V36, P383