Parameter learning in object-oriented Bayesian networks

被引:18
作者
Langseth, H [1 ]
Bangso, O
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
[2] Aalborg Univ, Dept Comp Sci, DK-9220 Aalborg, Denmark
关键词
Bayesian networks; object orientation; learning;
D O I
10.1023/A:1016769618900
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a method for parameter learning in Object-Oriented Bayesian Networks (OOBNs). We propose a methodology for learning parameters in OOBNs, and prove that maintaining the object orientation imposed by the prior model will increase the learning speed in object-oriented domains. We also propose a method to efficiently estimate the probability parameters in domains that are not strictly object oriented. Finally, we attack type uncertainty, a special case of model uncertainty typical to object-oriented domains.
引用
收藏
页码:221 / 243
页数:23
相关论文
共 41 条
[1]  
ABE N, 1991, PROCEEDINGS OF THE FOURTH ANNUAL WORKSHOP ON COMPUTATIONAL LEARNING THEORY, P277
[2]  
[Anonymous], P 10 ANN C UNC ART I
[3]  
Bangso O., 2001, Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference, P340
[4]  
BANGSO O, 2000, P 13 INT FLOR ART IN, P282
[5]  
BANGSO O, 2000, CIT87200OBPHW1 AALB
[6]  
BELLAZZI R, 1995, IJCAI 95 WORKSH WORK, P7
[7]  
Cheng J, 1999, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, P101
[8]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[9]  
Cowell R.G., 1999, PROBABILISTIC NETWOR
[10]  
Cramer H., 1946, Mathematical Methods of Statistics