Transition between two oscillation modes

被引:10
作者
LopezRuiz, R
Pomeau, Y
机构
[1] Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Cedex 05, 75231
关键词
D O I
10.1103/PhysRevE.55.R3820
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A model for the symmetric coupling of two self-oscillators is presented. The nonlinearities cause the system to vibrate in two modes of different symmetries. The transition between these two regimes of oscillation can occur by two different scenarios. This might model the release of vortices behind circular cylinders with a possible transition from a symmetric to an antisymmetric Benard-von Karman vortex street.
引用
收藏
页码:R3820 / R3823
页数:4
相关论文
共 12 条
[1]  
[Anonymous], 1990, DISSIPATIVE STRUCTUR, DOI DOI 10.1016/B978-0-08-092445-8.50011-0
[2]   AN ANALYTICAL AND NUMERICAL STUDY OF THE BIFURCATIONS IN A SYSTEM OF LINEARLY-COUPLED OSCILLATORS [J].
ARONSON, DG ;
DOEDEL, EJ ;
OTHMER, HG .
PHYSICA D, 1987, 25 (1-3) :20-104
[3]  
Bénard H, 1908, CR HEBD ACAD SCI, V147, P839
[4]  
LEGAL P, COMMUNICATION
[5]  
LEWEKE T, 1994, THESIS U PROVENCE MA
[6]  
MATHIS C, 1984, J PHYS LETT-PARIS, V45, pL483, DOI 10.1051/jphyslet:019840045010048300
[7]   ON CELL-FORMATION IN VORTEX STREETS [J].
NOACK, BR ;
OHLE, F ;
ECKELMANN, H .
JOURNAL OF FLUID MECHANICS, 1991, 227 :293-308
[8]  
PESCHARD I, 1995, THESIS U AIX MARSEIL
[9]   REMARKS ON BIFURCATIONS WITH SYMMETRY [J].
POMEAU, Y .
CHAOS SOLITONS & FRACTALS, 1995, 5 (09) :1755-1761
[10]  
van der Pol B, 1926, PHILOS MAG, V2, P978