A novel mechanism for myocardial stunning involving impaired Ca2+ handling

被引:90
作者
Kim, SJ
Kudej, RK
Yatani, A
Kim, YK
Takagi, G
Honda, R
Colantonio, DA
Van Eyk, JE
Vatner, DE
Rasmusson, RL
Vatner, SF
机构
[1] Univ Med & Dent New Jersey, New Jersey Med Sch, Cardiovasc Res Inst, Dept Med, Newark, NJ 07103 USA
[2] Hackensack Univ, Ctr Med, Hackensack, NJ USA
[3] Tufts Univ, Sch Vet Med, Dept Soft Tissue Surg, North Grafton, MA 01536 USA
[4] SUNY Buffalo, Dept Physiol, Buffalo, NY 14260 USA
[5] Queens Univ, Dept Physiol, Kingston, ON, Canada
关键词
ischemia; stunning; myocyte; calcium; action potential;
D O I
10.1161/hh2101.098547
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The mechanism of myocardial stunning has been studied extensively in rodents and is thought to involve a decrease in Ca2+ responsiveness of the myofilaments, degradation of Troponin I (TnI), and no change in Ca2+ handling. We studied the mechanism of stunning in isolated myocytes from chronically instrumented pigs. Myocytes were isolated from the ischemic (stunned) and nonischemic (normal) regions after 90-minute coronary stenosis followed by 60-minute reperfusion. Baseline myocyte contraction was reduced, P <0.01, in stunned myocytes (6.3 +/-0.4%) compared with normal myocytes (8.8 +/-0.4%). The time for 70% relaxation was prolonged, P <0.01. in stunned myocytes (131 +/-8 ms) compared with normal myocytes (105 +/-5 ms). The impaired contractile function was associated with decreased Ca2+ transients (stunned, 0.33 +/-0.04 versus normal, 0.49 +/-0.05, P <0.01). Action potential measurements in stunned myocytes demonstrated a decrease in plateau potential without a change in resting membrane potential. These changes were associated with decreased L-type Ca2+-current density (stunned, -4.8 +/-0.4 versus normal. -6.6 +/-0.4 pA/pF, P <0.01). There were no differences in TnI, sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), and phospholamban protein quantities. However, the fraction of phosphorylated phospholamban monomer was reduced in stunned myocardium. In rats, stunned myocytes demonstrated reduced systolic contraction but actually accelerated relaxation and no change in Ca2+ transients. Thus, mechanisms of stunning in the pig are radically different from the widely held concepts derived from studies in rodents and involve impaired Ca2+ handling and dephosphorylation of phospholamban, but not TnI degradation.
引用
收藏
页码:831 / 837
页数:7
相关论文
共 36 条