The Warburg effect in 2012

被引:171
作者
Bayley, Jean-Pierre [1 ]
Devilee, Peter [1 ,2 ]
机构
[1] Leiden Univ, Med Ctr, Dept Human Genet, NL-2333 ZC Leiden, Netherlands
[2] Leiden Univ, Med Ctr, Dept Pathol, NL-2333 ZC Leiden, Netherlands
关键词
cancer; glycolysis; metabolism; tumor; Warburg; PYRUVATE-KINASE M2; P53-INDUCIBLE REGULATOR; ALLOSTERIC REGULATION; METABOLISM; CANCER; SIRT3; IDENTIFICATION; EXPRESSION; LACTATE; BIOLOGY;
D O I
10.1097/CCO.0b013e32834deb9e
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose of review A revival of interest in tumor metabolism is underway and here we discuss recent results with a focus on the central theme of the Warburg effect, aerobic glycolysis. Recent findings The M2 tumor-specific isoform of pyruvate kinase has generated much interest, but it has now been reported that PKM2 is not specific to tumors. Despite this setback, the reciprocal regulation of PKM2, prolyl hydroxylase 3 and HIF-1 in a positive feedback loop shows that PKM2 is important to tumor metabolism. Hexokinase II was reported to be a crucial regulator of glycolysis in glioblastoma multiforme, and the importance of lactate dehydrogenase was underlined by evidence that a 'lactate-based dialog' exists between cancer cells and endothelial cells. A growing appreciation of the role of oncogenes and tumor suppressor genes in the Warburg effect was reflected in reports of the regulation of glutamine metabolism by p53, the role of c-Myc in the high glucose uptake of tumors, and the regulation of ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5) and ATP consumption by AKT. The sirtuins, SIRT3 and SIRT6, were also shown to play central roles in aerobic glycolysis and other aspects of tumor metabolism. Summary The results discussed illustrate the growing integration of the previously distinct fields of molecular biological and metabolic cancer research and show that this synergy is beginning to yield a more complete and comprehensive understanding of the tumor cell.
引用
收藏
页码:62 / 67
页数:6
相关论文
共 36 条
[1]   A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis [J].
Ahn, Bong-Hyun ;
Kim, Hyun-Seok ;
Song, Shiwei ;
Lee, In Hye ;
Liu, Jie ;
Vassilopoulos, Athanassios ;
Deng, Chu-Xia ;
Finkel, Toren .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (38) :14447-14452
[2]   TIGAR, a p53-inducible regulator of glycolysis and apoptosis [J].
Bensaad, Karim ;
Tsuruta, Atsushi ;
Selak, Mary A. ;
Calvo Vidal, M. Nieves ;
Nakano, Katsunori ;
Bartrons, Ramon ;
Gottlieb, Eyal ;
Vousden, Karen H. .
CELL, 2006, 126 (01) :107-120
[3]  
Bluemlein K, 2011, ONCOTARGET, V2, P393
[4]   Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer [J].
Chiche, Johanna ;
Brahimi-Horn, M. Christiane ;
Pouyssegur, Jacques .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2010, 14 (04) :771-794
[5]   The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth [J].
Christofk, Heather R. ;
Vander Heiden, Matthew G. ;
Harris, Marian H. ;
Ramanathan, Arvind ;
Gerszten, Robert E. ;
Wei, Ru ;
Fleming, Mark D. ;
Schreiber, Stuart L. ;
Cantley, Lewis C. .
NATURE, 2008, 452 (7184) :230-U74
[6]   Pyruvate kinase M2 is a phosphotyrosine-binding protein [J].
Christofk, Heather R. ;
Vander Heiden, Matthew G. ;
Wu, Ning ;
Asara, John M. ;
Cantley, Lewis C. .
NATURE, 2008, 452 (7184) :181-U27
[7]   Regulation of Succinate Dehydrogenase Activity by SIRT3 in Mammalian Mitochondria [J].
Cimen, Huseyin ;
Han, Min-Joon ;
Yang, Yongjie ;
Tong, Qiang ;
Koc, Hasan ;
Koc, Emine C. .
BIOCHEMISTRY, 2010, 49 (02) :304-311
[8]   The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation [J].
DeBerardinis, Ralph J. ;
Lum, Julian J. ;
Hatzivassiliou, Georgia ;
Thompson, Craig B. .
CELL METABOLISM, 2008, 7 (01) :11-20
[9]   Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis [J].
Dombrauckas, JD ;
Santarsiero, BD ;
Mesecar, AD .
BIOCHEMISTRY, 2005, 44 (27) :9417-9429
[10]   The ER UDPase ENTPD5 Promotes Protein N-Glycosylation, the Warburg Effect, and Proliferation in the PTEN Pathway [J].
Fang, Min ;
Shen, Zhirong ;
Huang, Song ;
Zhao, Liping ;
Chen, She ;
Mak, Tak W. ;
Wang, Xiaodong .
CELL, 2010, 143 (05) :711-724