Compression-induced damage in a muscle cell model in vitro

被引:17
作者
Wang, YN
Bouten, CVC
Lee, DA
Bader, DL
机构
[1] Univ London, Dept Engn, Queen Mary, Med Engn Div, London E1 4NS, England
[2] Eindhoven Univ Technol, Dept Biomed Engn, NL-5600 MB Eindhoven, Netherlands
关键词
in vitro model; muscle cells; pressure ulcer; cellular breakdown; apoptosis;
D O I
10.1243/095441105X9246
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Soft tissue breakdown can be initiated at the muscle layer associated with bony prominences, leading to the development of pressure ulcers. Both the magnitude and duration of pressure are important factors in this breakdown process. The present study utilizes a physical model, incorporating C2C12 mouse myoblasts in a homogeneous agarose gel, to examine the damaging effects of prolonged applied pressure. Identical cylindrical cores cut from the agarose/cell suspension were subjected to two separate compressive strains, of 10 and 20 per cent. The strain was applied for time periods ranging from 0.5 to 12 hours, using a specially designed loading apparatus. After each compression period, sections taken from the central horizontal plane of the individual constructs were stained using either haematoxylin and eosin or with the fluorescent probes, Calcein AM and ethidium homodimer-1, and assessed for cell damage. It was found that constructs subjected to the higher strain values demonstrated significantly higher values of non-viable cells for equivalent time points compared to the unstrained constructs. Further analysis on sections using the DNA nick-translation method suggested that this increase was primarily due to apoptosis. These findings imply a relationship between the duration of applied compression and damage to muscle cells seeded in the gel, which was particularly apparent at the strain level of 20 per cent, equivalent to a clinically relevant pressure of 32 mmHg (4.3 kPa). Such an approach might be useful in establishing damage threshold levels at a cellular level.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 39 条
[1]  
[Anonymous], 1993, REV CLIN GERONTOLOGY, DOI DOI 10.1017/S0959259800003622
[2]  
BADER DL, 1990, PRESSURE SORES CLIN, P1
[3]   EARLY PROGRESSIVE CHANGES IN TISSUE VIABILITY IN THE SEATED SPINAL-CORD INJURED SUBJECT [J].
BOGIE, KM ;
NUSEIBEH, I ;
BADER, DL .
PARAPLEGIA, 1995, 33 (03) :141-147
[4]   Quantification and localisation of damage in rat muscles after controlled loading; a new approach to study the aetiology of pressure sores [J].
Bosboom, EMH ;
Bouten, CVC ;
Oomens, CWJ ;
van Straaten, HWM ;
Baaijens, FPT ;
Kuipers, H .
MEDICAL ENGINEERING & PHYSICS, 2001, 23 (03) :195-200
[5]   The etiology of pressure ulcers: Skin deep or muscle bound? [J].
Bouten, CV ;
Oomens, CW ;
Baaijens, FP ;
Bader, DL .
ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2003, 84 (04) :616-619
[6]  
Bouten CVC, 2003, BIORHEOLOGY, V40, P383
[7]   Compressive deformation and damage of muscle cell subpopulations in a model system [J].
Bouten, CVC ;
Knight, MM ;
Lee, DA ;
Bader, DL .
ANNALS OF BIOMEDICAL ENGINEERING, 2001, 29 (02) :153-163
[8]  
BOUTEN CVC, 1997, ASME BIOENG C, V35, P491
[9]  
BRAND PW, 1976, BEDSORE BIOMECHANICS, P19
[10]  
CAPLAN A, 1988, INJURY REPAIR MUSCUL, P213