Analysis of a few numerical integration methods for the Langevin equation

被引:47
作者
Wang, W
Skeel, RD
机构
[1] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1080/0026897031000135825
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the position recurrence relation of several existing numerical integrators for the Langevin equation and use the modified equation approach to analyse their accuracy. We show that for the harmonic oscillator, the BBK integrator converges weakly with order I while the vGB82 and Langevin impulse (L (I) over cap)double dagger integrator converge weakly with order 2. We also study a restricted class of velocity definitions-those that lead to explicit starting procedures. We show that some recurrence relations exact for constant force, can achieve the exact virial relation by a proper definition of velocity, extending the result of Pastor et al. on the analysis of BBK integrators in 1988.
引用
收藏
页码:2149 / 2156
页数:8
相关论文
共 15 条
  • [1] Allen M. P., 1987, COMPUTER SIMULATIONS, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
  • [2] STOCHASTIC BOUNDARY-CONDITIONS FOR MOLECULAR-DYNAMICS SIMULATIONS OF ST2 WATER
    BRUNGER, A
    BROOKS, CL
    KARPLUS, M
    [J]. CHEMICAL PHYSICS LETTERS, 1984, 105 (05) : 495 - 500
  • [3] Dahlquist G., 1974, NUMERICAL METHODS
  • [4] LONG TIMESTEP DYNAMICS OF PEPTIDES BY THE DYNAMICS DRIVER APPROACH
    DERREUMAUX, P
    SCHLICK, T
    [J]. PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1995, 21 (04): : 282 - 302
  • [5] ON THE SCOPE OF THE METHOD OF MODIFIED EQUATIONS
    GRIFFITHS, DF
    SANZSERNA, JM
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (03): : 994 - 1008
  • [6] Computer simulation of ion conductance in membrane channels
    Hoyles, M
    Kuyucak, S
    Chun, SH
    [J]. PHYSICAL REVIEW E, 1998, 58 (03): : 3654 - 3661
  • [7] KOLEDEN PE, 1995, NUMERICAL SOLUTION S
  • [8] The notion of error in Langevin dynamics .1. Linear analysis
    Mishra, B
    Schlick, T
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (01) : 299 - 318
  • [9] AN ANALYSIS OF THE ACCURACY OF LANGEVIN AND MOLECULAR-DYNAMICS ALGORITHMS
    PASTOR, RW
    BROOKS, BR
    SZABO, A
    [J]. MOLECULAR PHYSICS, 1988, 65 (06) : 1409 - 1419
  • [10] Skeel R.D., 1999, GRADUATE STUDENTS GU, P119