Glial cells generate neurons -: Master control within CNS regions:: Developmental perspectives on neural stem cells

被引:52
作者
Götz, M [1 ]
机构
[1] Max Planck Inst Neurobiol, Munich, Germany
关键词
neurogenesis; radial glia; stem cell; pax6; notch;
D O I
10.1177/1073858403257138
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
A common problem in neural stem cell research is the poor generation of neuronal or oligodendroglial descendants. The author takes a developmental perspective to propose solutions to this problem. After a general overview of the recent progress in developmental neurobiology, she highlights the necessity of the sequential and hierarchical specification of CNS precursors toward the generation of specific cell types, for example, neurons. In the developing as well as the adult CNS, multipotent stem cells do not directly generate neurons but give rise to precursors that are specified and restricted toward the generation of neurons. Some molecular determinants of this fate restriction have been identified during recent years and reveal that progression via this fate-restricted state is a necessary step of neurogenesis. These discoveries also demonstrate that neuronal fate specification is inseparably linked at the molecular level to regionalization of the developing CNS. These fate determinants and their specific action in distinct region-specific contexts are essential to direct the progeny of stem cells more efficiently toward the generation of the desired cell types. Recent data are discussed that demonstrate the common identity of precursors and stem cells in the developing and adult nervous system as radial glia, astroglia, or non-myelinating glia. A novel lineage model is proposed that incorporates these new views and explains why the default pathway of stem cells is astroglia. These new insights into the cellular and molecular mechanisms of neurogenesis help to design novel approaches for reconstitutive therapy of neurodegenerative diseases.
引用
收藏
页码:379 / 397
页数:19
相关论文
共 153 条
[1]   Neuroepithelial cells downregulate their plasma membrane polarity prior to neural tube closure and neurogenesis [J].
Aaku-Saraste, E ;
Oback, B ;
Hellwig, A ;
Huttner, WB .
MECHANISMS OF DEVELOPMENT, 1997, 69 (1-2) :71-81
[2]   Identification of neural stem cells in the adult vertebrate brain [J].
Alvarez-Buylla, A ;
Seri, B ;
Doetsch, F .
BRAIN RESEARCH BULLETIN, 2002, 57 (06) :751-758
[3]   A unified hypothesis on the lineage of neural stem cells [J].
Alvarez-Buylla, A ;
García-Verdugo, JM ;
Tramontin, AD .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (04) :287-293
[4]   Neuronal replacement from endogenous precursors in the adult brain after stroke [J].
Arvidsson, A ;
Collin, T ;
Kirik, D ;
Kokaia, Z ;
Lindvall, O .
NATURE MEDICINE, 2002, 8 (09) :963-970
[5]   Neuronal plasticity and regeneration in the olfactory system of mammals: morphological and functional recovery following olfactory bulb deafferentation [J].
Astic, L ;
Saucier, D .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2001, 58 (04) :538-545
[6]   Master regulatory genes; telling them what to do [J].
Baker, NE .
BIOESSAYS, 2001, 23 (09) :763-766
[7]   Dynamic domains of gene expression in the early avian forebrain [J].
Bell, E ;
Ensini, M ;
Gulisano, M ;
Lumsden, A .
DEVELOPMENTAL BIOLOGY, 2001, 236 (01) :76-88
[8]   Growth and fate of PSA-NCAM+ precursors of the postnatal brain [J].
Ben-Hur, T ;
Rogister, B ;
Murray, K ;
Rougon, G ;
Dubois-Dalcq, M .
JOURNAL OF NEUROSCIENCE, 1998, 18 (15) :5777-5788
[9]   Proneural genes and the specification of neural cell types [J].
Bertrand, N ;
Castro, DS ;
Guillemot, F .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (07) :517-530
[10]   A study of the potential of the embryonic rat telencephalon to generate oligodendrocytes [J].
Birling, MC ;
Price, J .
DEVELOPMENTAL BIOLOGY, 1998, 193 (01) :100-113