Complete exact solution of diffusion-limited coalescence, A+A→A

被引:63
作者
ben-Avraham, D [1 ]
机构
[1] Clarkson Univ, Dept Phys, Potsdam, NY 13699 USA
[2] Clarkson Univ, Clarkson Inst Stat Phys, Potsdam, NY 13699 USA
关键词
D O I
10.1103/PhysRevLett.81.4756
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Some models of diffusion-limited reaction processes in one dimension lend themselves to exact analysis. The known approaches yield exact expressions for a limited number of quantities of interest, such as the particle concentration, or the distribution of distances between nearest particles. However. a full characterization of a particle system is provided only by the infinite hierarchy of multiple-point density correlation functions. We derive an exact description of the full hierarchy of correlation functions for the diffusion-limited irreversible coalescence process A + A --> A. [S0031 -9007(98)07742-4].
引用
收藏
页码:4756 / 4759
页数:4
相关论文
共 21 条
[1]   INTER-PARTICLE DISTRIBUTION-FUNCTIONS FOR ONE-SPECIES DIFFUSION-LIMITED ANNIHILATION, A+A-]0 [J].
ALEMANY, PA ;
BENAVRAHAM, D .
PHYSICS LETTERS A, 1995, 206 (1-2) :18-25
[2]   Universality of a class of annihilation coagulation models [J].
Balboni, D ;
Rey, PA ;
Droz, M .
PHYSICAL REVIEW E, 1995, 52 (06) :6220-6226
[3]   THE METHOD OF INTER-PARTICLE DISTRIBUTION-FUNCTIONS FOR DIFFUSION-REACTION SYSTEMS IN ONE-DIMENSION [J].
BENAVRAHAM, D .
MODERN PHYSICS LETTERS B, 1995, 9 (15) :895-919
[4]   STATICS AND DYNAMICS OF A DIFFUSION-LIMITED REACTION - ANOMALOUS KINETICS, NONEQUILIBRIUM SELF-ORDERING, AND A DYNAMIC TRANSITION [J].
BENAVRAHAM, D ;
BURSCHKA, MA ;
DOERING, CR .
JOURNAL OF STATISTICAL PHYSICS, 1990, 60 (5-6) :695-728
[5]  
Benson S.W., 1960, FDN CHEM KINETICS
[6]  
BURSCHKA MA, UNPUB
[7]   MICROSCOPIC SPATIAL CORRELATIONS INDUCED BY EXTERNAL NOISE IN A REACTION DIFFUSION SYSTEM [J].
DOERING, CR .
PHYSICA A, 1992, 188 (1-3) :386-403
[8]  
Haken H., 1978, Synergetics
[9]   Reaction-diffusion processes from equivalent integrable quantum chains [J].
Henkel, M ;
Orlandini, E ;
Santos, J .
ANNALS OF PHYSICS, 1997, 259 (02) :163-231
[10]   EQUIVALENCES BETWEEN STOCHASTIC-SYSTEMS [J].
HENKEL, M ;
ORLANDINI, E ;
SCHUTZ, GM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (22) :6335-6344