PWM Control of Dual Active Bridge: Comprehensive Analysis and Experimental Verification

被引:431
作者
Jain, Amit Kumar [1 ]
Ayyanar, Rajapandian [2 ]
机构
[1] Peregrine Power LLC, Wilsonville, OR 97008 USA
[2] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA
关键词
Bidirectional converters; dc-dc conversion; pulsewidth modulation (PWM); soft switching; DC-DC CONVERTER; BIDIRECTIONAL CONVERTER; FUEL-CELL; POWER; SYSTEM;
D O I
10.1109/TPEL.2010.2070519
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The dual-active-bridge (DAB) topology is ideally suited for high-power dc-dc conversion, especially when bidirectional power transfer is required. However, it has the drawback of high circulating currents and hard switching at light loads, if wide variation in input and output is expected. To address these issues, this paper presents a comprehensive analysis and experimental results with pulsewidth-modulation (PWM) control of the DAB. The PWM control is in addition to phase-shift modulation between the two-H-bridges. The analysis addresses PWM of one bridge at a time and of both bridges simultaneously. In the latter, five distinct modes arise based on the choice of PWM and load condition. The possibilities are analyzed for optimizing power density and efficiency for low-load operation. Finally, a composite scheme combining single and dual PWM is proposed that extends the soft-switching range down to zero-load condition, reduces rms and peak currents, and results in significant size reduction of the transformer. Experimental results are presented with a 10-kW prototype.
引用
收藏
页码:1215 / 1227
页数:13
相关论文
共 28 条
[1]  
AGGELER D, P 23 IEEE APPL POW E, P801
[2]  
Ariyur K. B., 2003, REAL TIME OPTIMIZATI
[3]   Eliminate Reactive Power and Increase System Efficiency of Isolated Bidirectional Dual-Active-Bridge DC-DC Converters Using Novel Dual-Phase-Shift Control [J].
Bai, Hua ;
Mi, Chris .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2008, 23 (06) :2905-2914
[4]  
DEDONCKER R, P 34 IEEE POW EL SPE, V1, P27
[5]   A 3-PHASE SOFT-SWITCHED HIGH-POWER-DENSITY DC-DC CONVERTER FOR HIGH-POWER APPLICATIONS [J].
DEDONCKER, RWAA ;
DIVAN, DM ;
KHERALUWALA, MH .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1991, 27 (01) :63-73
[6]   Three-port bidirectional converter for hybrid fuel cell systems [J].
Duarte, Jorge L. ;
Hendrix, Marcel ;
Simoes, Marcelo Godoy .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2007, 22 (02) :480-487
[7]   A bidirectional DC-DC converter for an energy storage system with galvanic isolation [J].
Inoue, Shigenori ;
Akagi, Hirofumi .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2007, 22 (06) :2299-2306
[8]   A bidirectional isolated DC-DC converter as a core circuit of the next-generation medium-voltage power conversion system [J].
Inoue, Shigenori ;
Akagi, Hirofumi .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2007, 22 (02) :535-542
[9]   PERFORMANCE CHARACTERIZATION OF A HIGH-POWER DUAL ACTIVE BRIDGE DC-TO-DC-CONVERTER [J].
KHERALUWALA, MH ;
GASCOIGNE, RW ;
DIVAN, DM ;
BAUMANN, ED .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1992, 28 (06) :1294-1301
[10]  
Krishnamurthy H., P 38 IEEE POW EL SPE, P483