Induction of an AP endonuclease activity in Streptococcus mutans during growth at low pH

被引:52
作者
Hahn, K
Faustoferri, RC
Quivey, RG
机构
[1] Univ Rochester, Sch Med & Dent, Ctr Oral Biol, Rochester, NY 14642 USA
[2] Univ Rochester, Sch Med & Dent, Dept Microbiol & Immunol, Rochester, NY 14642 USA
关键词
D O I
10.1046/j.1365-2958.1999.01292.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The oral microbe Streptococcus mutans uses adaptive mechanisms to withstand the fluctuating pH levels in its natural environment. The regulation of protein synthesis is part of the mechanism of acid adaptation and tolerance in S. mutans. Here, we demonstrate that the organism's acid-inducible protein repertoire includes an AP endonuclease activity. This abasic site-specific endonuclease activity is present at greater levels in cells grown at low pH than in cells grown at pH7, and is apparently independent of the RecA protein. Experiments using tetrahydrofuran or alpha-deoxyadenosine-containing substrates indicate that the activity induced at low pH may be similar to the activity of exonuclease III from E. coli. Acid-adapted S. mutans also shows an increased survival rate after exposure to near-UV radiation in both the wild type and a recA strain. Far-UV radiation resistance is observed in the wild type only. The endonuclease activity was purified approximate to 500-fold from an S. mutans recA mutant strain grown at pH 5. Initial characterization revealed a 3' to 5' exonuclease activity, and showed additional functional similarities to DNA repair enzymes from other organisms.
引用
收藏
页码:1489 / 1498
页数:10
相关论文
共 43 条
[1]   ADAPTATION OF STREPTOCOCCUS-MUTANS AND ENTEROCOCCUS-HIRAE TO ACID STRESS IN CONTINUOUS CULTURE [J].
BELLI, WA ;
MARQUIS, RE .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1991, 57 (04) :1134-1138
[2]   ACID TOLERANCE, PROTON PERMEABILITIES, AND MEMBRANE ATPASES OF ORAL STREPTOCOCCI [J].
BENDER, GR ;
SUTTON, SVW ;
MARQUIS, RE .
INFECTION AND IMMUNITY, 1986, 53 (02) :331-338
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   2 DISTINCT HUMAN DNA DIESTERASES THAT HYDROLYZE 3'-BLOCKING DEOXYRIBOSE FRAGMENTS FROM OXIDIZED DNA [J].
CHEN, DS ;
HERMAN, T ;
DEMPLE, B .
NUCLEIC ACIDS RESEARCH, 1991, 19 (21) :5907-5914
[5]   ENDONUCLEASE IV (NFO) MUTANT OF ESCHERICHIA-COLI [J].
CUNNINGHAM, RP ;
SAPORITO, SM ;
SPITZER, SG ;
WEISS, B .
JOURNAL OF BACTERIOLOGY, 1986, 168 (03) :1120-1127
[6]   PH REGULATION BY STREPTOCOCCUS-MUTANS [J].
DASHPER, SG ;
REYNOLDS, EC .
JOURNAL OF DENTAL RESEARCH, 1992, 71 (05) :1159-1165
[7]  
DEBERG RJ, 1995, CARCINOGENESIS, V16, P2455
[8]   ESCHERICHIA-COLI XTH MUTANTS ARE HYPERSENSITIVE TO HYDROGEN-PEROXIDE [J].
DEMPLE, B ;
HALBROOK, J ;
LINN, S .
JOURNAL OF BACTERIOLOGY, 1983, 153 (02) :1079-1082
[9]   EXONUCLEASE-III AND ENDONUCLEASE-IV REMOVE 3' BLOCKS FROM DNA-SYNTHESIS PRIMERS IN H2O2-DAMAGED ESCHERICHIA-COLI [J].
DEMPLE, B ;
JOHNSON, A ;
FUNG, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (20) :7731-7735
[10]   INDUCIBLE PH HOMEOSTASIS AND THE ACID TOLERANCE RESPONSE OF SALMONELLA-TYPHIMURIUM [J].
FOSTER, JW ;
HALL, HK .
JOURNAL OF BACTERIOLOGY, 1991, 173 (16) :5129-5135