Complete sequence, gene arrangement, and genetic code of mitochondrial DNA of the cephalochordate Branchiostoma floridae (Amphioxus)

被引:62
作者
Boore, JL [1 ]
Daehler, LL [1 ]
Brown, WM [1 ]
机构
[1] Univ Michigan, Dept Biol, Ann Arbor, MI 48109 USA
关键词
Branchiostoma; amphioxus; mitochondria; evolution; chordate; genome;
D O I
10.1093/oxfordjournals.molbev.a026122
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have determined the 15,083-nucleotide (nt) sequence of the mitochondrial DNA (mtDNA) of the lancelet Branchiostoma floridae (Chordata: Cephalochordata). As is typical in metazoans, the mtDNA encodes 13 protein, 2 rRNA, and 22 tRNA genes. The,gene arrangement differs from the common vertebrate arrangement by only four tRNA gene positions. Three of these are unique to Branchiostoma, but the fourth is in a position that is primitive for chordates. It shares the genetic code variations found in vertebrate mtDNAs except that AGA = serine, a code variation found in many invertebrate phyla but not in vertebrates (the related codon AGG was not found). Branchiostoma mtDNA lacks a vertebrate-like control region; its largest noncoding region (129 nt) is unremarkable in sequence or base composition, and its location between ND5 and rRNA(G) differs from that usually found in vertebrates. It also lacks a potential hairpin DNA structure like those found in many (though not in all) vertebrates to serve as the second-strand (i.e., L-strand) origin of replication. Perhaps related to this, the sequence corresponding to the DHU arm of tRNA(C) cannot form a helical stem, a condition found in a few other vertebrate mtDNAs that also lack a canonical L-strand origin of replication. ATG and GTG codons appear to initiate translation in 11 and 2 of the protein-encoding genes, respectively. Protein genes end with complete (TAA or TAG) or incomplete (T or TA) stop codons; the latter are presumably converted to TAA by post-transcriptional polyadenylation.
引用
收藏
页码:410 / 418
页数:9
相关论文
共 49 条
[1]   SEQUENCE AND ORGANIZATION OF THE HUMAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
BANKIER, AT ;
BARRELL, BG ;
DEBRUIJN, MHL ;
COULSON, AR ;
DROUIN, J ;
EPERON, IC ;
NIERLICH, DP ;
ROE, BA ;
SANGER, F ;
SCHREIER, PH ;
SMITH, AJH ;
STADEN, R ;
YOUNG, IG .
NATURE, 1981, 290 (5806) :457-465
[2]   Gene translocation links insects and crustaceans [J].
Boore, JL ;
Lavrov, DV ;
Brown, WM .
NATURE, 1998, 392 (6677) :667-668
[3]   DEDUCING THE PATTERN OF ARTHROPOD PHYLOGENY FROM MITOCHONDRIAL-DNA REARRANGEMENTS [J].
BOORE, JL ;
COLLINS, TM ;
STANTON, D ;
DAEHLER, LL ;
BROWN, WM .
NATURE, 1995, 376 (6536) :163-165
[4]  
BOORE JL, 1994, NAUTILUS S, V2, P61
[5]  
BOORE JL, 1996, CURRENT TOPICS MOL E, P69
[6]   POLYMORPHISM IN MITOCHONDRIAL-DNA OF HUMANS AS REVEALED BY RESTRICTION ENDONUCLEASE ANALYSIS [J].
BROWN, WM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1980, 77 (06) :3605-3609
[7]  
CANTATORE P, 1989, J BIOL CHEM, V264, P10965
[8]   PERVASIVE CPG SUPPRESSION IN ANIMAL MITOCHONDRIAL GENOMES [J].
CARDON, LR ;
BURGE, C ;
CLAYTON, DA ;
KARLIN, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (09) :3799-3803
[9]   Codon reassignment and amino acid composition in hemichordate mitochondria [J].
Castresana, J ;
Feldmaier-Fuchs, G ;
Pääbo, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3703-3707
[10]   THE COMPLETE NUCLEOTIDE-SEQUENCE AND GENE ORGANIZATION OF CARP (CYPRINUS-CARPIO) MITOCHONDRIAL GENOME [J].
CHANG, YS ;
HUANG, FL ;
LO, TB .
JOURNAL OF MOLECULAR EVOLUTION, 1994, 38 (02) :138-155