Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition

被引:472
作者
Irie, HY
Pearline, RV
Grueneberg, D
Hsia, M
Ravichandran, P
Kothari, N
Natesan, S
Brugge, JS [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[3] Sanofi Aventis Pharmaceut, Cambridge Genom Ctr, Cambridge, MA 02139 USA
关键词
D O I
10.1083/jcb.200505087
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The Akt family of kinases are activated by growth factors and regulate pleiotropic cellular activities. In this study, we provide evidence for isoform-specific positive and negative roles for Akt1 and -2 in regulating growth factor-stimulated phenotypes in breast epithelial cells. Insulin-like growth factor-I receptor (IGF-IR) hyperstimulation induced hyperproliferation and antiapoptotic activities that were reversed by Akt2 down-regulation. In contrast, Akt1 down-regulation in IGF-IR-stimulated cells promoted dramatic neomorphic effects characteristic of an epithelial-mesenchymal transition (EMT) and enhanced cell migration induced by IGF-I or EGF stimulation. The phenotypic effects of Akt1 down-regulation were accompanied by enhanced extracellular signal-related kinase (ERK) activation, which contributed to the induction of migration and EMT. Interestingly, down-regulation of Akt2 suppressed the EMT-like morphological conversion induced by Akt1 down-regulation in IGF-IR-overexpressing cells and inhibited migration in EGF-stimulated cells. These results highlight the distinct functions of Akt isoforms in regulating growth factor-stimulated EMT and cell migration, as well as the importance of Akt1 in cross-regulating the ERK signaling pathway.
引用
收藏
页码:1023 / 1034
页数:12
相关论文
共 45 条
[1]  
Arboleda MJ, 2003, CANCER RES, V63, P196
[2]   Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B [J].
Bae, SS ;
Cho, H ;
Mu, J ;
Birnbaum, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (49) :49530-49536
[3]   The Akt/PKB family of protein kinases: A review of small molecule inhibitors and progress towards target validation [J].
Barnett, SF ;
Bilodeau, MT ;
Lindsley, CW .
CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2005, 5 (02) :109-125
[4]   Activation of AKT kinases in cancer: Implications for therapeutic targeting [J].
Bellacosa, A ;
Kumar, CC ;
Di Cristofano, A ;
Testa, JR .
ADVANCES IN CANCER RESEARCH, VOL 94, 2005, 94 :29-+
[5]   MOLECULAR ALTERATIONS OF THE AKT2 ONCOGENE IN OVARIAN AND BREAST CARCINOMAS [J].
BELLACOSA, A ;
DEFEO, D ;
GODWIN, AK ;
BELL, DW ;
CHENG, JQ ;
ALTOMARE, DA ;
WAN, MH ;
DUBEAU, L ;
SCAMBIA, G ;
MASCIULLO, V ;
FERRANDINA, G ;
PANICI, PB ;
MANCUSO, S ;
NERI, G ;
TESTA, JR .
INTERNATIONAL JOURNAL OF CANCER, 1995, 64 (04) :280-285
[6]   Advances in protein kinase B signalling:: AKTion on multiple fronts [J].
Brazil, DP ;
Yang, ZZ ;
Hemmings, BA .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (05) :233-242
[7]   Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice [J].
Cho, H ;
Thorvaldsen, JL ;
Chu, QW ;
Feng, F ;
Birnbaum, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (42) :38349-38352
[8]   Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ) [J].
Cho, H ;
Mu, J ;
Kim, JK ;
Thorvaldsen, JL ;
Chu, QW ;
Crenshaw, EB ;
Kaestner, KH ;
Bartolomei, MS ;
Shulman, GI ;
Birnbaum, MJ .
SCIENCE, 2001, 292 (5522) :1728-1731
[9]   Inhibition of phosphatidylinositol-3-kinase enhances insulin stimulation of insulin receptor substrate 1 tyrosine phosphorylation and extracellular signal-regulated kinases in mouse R- fibroblasts [J].
Choi, WS ;
Sung, CK .
JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION, 2004, 24 (1-2) :67-83
[10]   NON-SH2 DOMAINS WITHIN INSULIN-RECEPTOR SUBSTRATE-1 AND SHC MEDIATE THEIR PHOSPHOTYROSINE-DEPENDENT INTERACTION WITH THE NPEY MOTIF OF THE INSULIN-LIKE GROWTH-FACTOR-I RECEPTOR [J].
CRAPARO, A ;
ONEILL, TJ ;
GUSTAFSON, TA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (26) :15639-15643