An automated peak identification/calibration procedure for high-dimensional protein measures from mass spectrometers

被引:77
作者
Yasui, Y
McLerran, D
Adam, BL
Winget, M
Thornquist, M
Feng, ZD
机构
[1] Fred Hutchinson Canc Res Ctr, Canc Prevent Res Program, Seattle, WA 98109 USA
[2] Eastern Virginia Med Sch, Dept Microbiol & Mol Cell Biol, Norfolk, VA 23507 USA
来源
JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY | 2003年 / 04期
关键词
D O I
10.1155/S111072430320927X
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Discovery of "signature" protein profiles that distinguish disease states (eg, malignant, benign, and normal) is a key step towards translating recent advancements in proteomic technologies into clinical utilities. Protein data generated from mass spectrometers are, however, large in size and have complex features due to complexities in both biological specimens and interfering biochemical/physical processes of the measurement procedure. Making sense out of such high-dimensional complex data is challenging and necessitates the use of a systematic data analytic strategy. We propose here a data processing strategy for two major issues in the analysis of such mass-spectrometry-generated proteomic data: (1) separation of protein "signals" from background "noise" in protein intensity measurements and (2) calibration of protein mass/charge measurements across samples. We illustrate the two issues and the utility of the proposed strategy using data from a prostate cancer biomarker discovery project as an example.
引用
收藏
页码:242 / 248
页数:7
相关论文
共 14 条
[1]  
Adam BL, 2001, PROTEOMICS, V1, P1264, DOI 10.1002/1615-9861(200110)1:10<1264::AID-PROT1264>3.0.CO
[2]  
2-R
[3]  
Adam BL, 2002, CANCER RES, V62, P3609
[4]   An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers [J].
Ball, G ;
Mian, S ;
Holding, F ;
Allibone, RO ;
Lowe, J ;
Ali, S ;
Li, G ;
McCardle, S ;
Ellis, IO ;
Creaser, C ;
Rees, RC .
BIOINFORMATICS, 2002, 18 (03) :395-404
[5]   Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: Potential for new biomarkers to aid in the diagnosis of breast cancer [J].
Paweletz, CP ;
Trock, B ;
Pennanen, M ;
Tsangaris, T ;
Magnant, C ;
Liotta, LA ;
Petricoin, EF .
DISEASE MARKERS, 2001, 17 (04) :301-307
[6]   Use of proteomic patterns in serum to identify ovarian cancer [J].
Petricoin, EF ;
Ardekani, AM ;
Hitt, BA ;
Levine, PJ ;
Fusaro, VA ;
Steinberg, SM ;
Mills, GB ;
Simone, C ;
Fishman, DA ;
Kohn, EC ;
Liotta, LA .
LANCET, 2002, 359 (9306) :572-577
[7]  
Qu YS, 2002, CLIN CHEM, V48, P1835
[8]  
Rosty C, 2002, CANCER RES, V62, P1868
[9]  
Rubin R B, 2000, Am Clin Lab, V19, P28
[10]  
Srinivas PR, 2001, CLIN CHEM, V47, P1901