Non-neuronal induction of immunoproteasome subunits in an ALS model: Possible mediation by cytokines

被引:49
作者
Puttaparthi, K [1 ]
Elliott, JL [1 ]
机构
[1] Univ Texas, SW Med Ctr, Dept Neurol, Dallas, TX 75216 USA
关键词
ALS; motor neuron; spinal cord; TNF-alpha; astrocyte; cytokine;
D O I
10.1016/j.expneurol.2005.08.027
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Protein aggregation is a pathologic hallmark of familial amyotrophic lateral sclerosis caused by mutations in the Cu, Zn superoxide dismutase gene. Although SOD1-positive aggregates can be cleared by proteasomes, aggregates have been hypothesized to interfere with proteasome activity, leading to a vicious cycle that further enhances aggregate accumulation. To address this issue, we measured proteasome activity in transgenic mice expressing a G93A SOD1 mutation. We find that proteasome activity is induced in the spinal cord of such mice compared to controls but is not altered in uninvolved organs such as liver or spleen. This induction within spinal cord is not related to an overall increase in the total number of proteasome subunits, as evidenced by the steady expression levels of constitutive 0 and 5 subunits. In contrast, we found a marked increase of inducible beta proteasome subunits, LMP2, MECL-1 and LMP7. This induction of immunoproteasome subunits does not occur in all spinal cord cell types but appears limited to astrocytes and microglia. The induction of immunoproteasome subunits in G93A spinal cord organotypic slices treated with TNF-alpha and interferon-gamma suggest that certain cytokines may mediate such responses in vivo. Our results indicate that there is an overall increase in proteasome function in the spinal cords of G93A SOD1 mice that correlates with an induction of immunoproteasomes subunits and a shift toward immunoproteasome composition. These results suggest that increased, rather than decreased, proteasome function is a response of certain cell types to mutant SOD1-induced disease within spinal cord. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:441 / 451
页数:11
相关论文
共 52 条
[1]   Inducible nitric oxide synthase up-regulation in a transgenic mouse model of familial amyotrophic lateral sclerosis [J].
Almer, G ;
Vukosavic, S ;
Romero, N ;
Przedborski, S .
JOURNAL OF NEUROCHEMISTRY, 1999, 72 (06) :2415-2425
[2]   Impairment of the ubiquitin-proteasome system by protein aggregation [J].
Bence, NF ;
Sampat, RM ;
Kopito, RR .
SCIENCE, 2001, 292 (5521) :1552-1555
[3]   ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions [J].
Bruijn, LI ;
Becher, MW ;
Lee, MK ;
Anderson, KL ;
Jenkins, NA ;
Copeland, NG ;
Sisodia, SS ;
Rothstein, JD ;
Borchelt, DR ;
Price, DL ;
Cleveland, DW .
NEURON, 1997, 18 (02) :327-338
[4]   Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1 [J].
Bruijn, LI ;
Houseweart, MK ;
Kato, S ;
Anderson, KL ;
Anderson, SD ;
Ohama, E ;
Reaume, AG ;
Scott, RW ;
Cleveland, DW .
SCIENCE, 1998, 281 (5384) :1851-1854
[5]   Expression and regulation of interferon γ-inducible proteasomal subunits LMP7 and LMP10 in the bovine corpus luteum [J].
Cannon, MJ ;
Pate, JL .
BIOLOGY OF REPRODUCTION, 2003, 68 (04) :1447-1454
[6]   Altered properties of the branched chain amino acid-preferring activity contribute to increased cleavages after branched chain residues by the "immunoproteasome" [J].
Cardozo, C ;
Kohanski, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (27) :16764-16770
[7]   Accumulation of human SOD1 and ubiquitinated deposits in the spinal cord of SOD1G93A mice during motor neuron disease progression correlates with a decrease of proteasome [J].
Cheroni, C ;
Peviani, M ;
Cascio, P ;
DeBlasi, S ;
Monti, C ;
Bendotti, C .
NEUROBIOLOGY OF DISEASE, 2005, 18 (03) :509-522
[8]   Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice [J].
Clement, AM ;
Nguyen, MD ;
Roberts, EA ;
Garcia, ML ;
Boillée, S ;
Rule, M ;
McMahon, AP ;
Doucette, W ;
Siwek, D ;
Ferrante, RJ ;
Brown, RH ;
Julien, JP ;
Goldstein, LSB ;
Cleveland, DW .
SCIENCE, 2003, 302 (5642) :113-117
[9]  
DALCANTO MC, 1994, AM J PATHOL, V145, P1271
[10]   Identification, purification, and characterization of a PA700-dependent activator of the proteasome [J].
DeMartino, GN ;
Proske, RJ ;
Moomaw, CR ;
Strong, AA ;
Song, XL ;
Hisamatsu, H ;
Tanaka, K ;
Slaughter, CA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (06) :3112-3118