Ab initio and direct quasiclassical-trajectory study of the F+CH4→HF+CH3 reaction -: art. no. 214305

被引:42
作者
Troya, D [1 ]
机构
[1] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA
关键词
D O I
10.1063/1.2126972
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present an electronic structure and dynamics study of the F+CH(4)-> HF+CH(3) reaction. CCSD(T)/aug-cc-pVDZ geometry optimizations, harmonic-frequency, and energy calculations indicate that the potential-energy surface is remarkably isotropic near the transition state. In addition, while the saddle-point F-H-C angle is 180 degrees using MP2 methods, CCSD(T) geometry optimizations predict a bent transition state, with a 153 degrees F-H-C angle. We use these high-quality ab initio data to reparametrize the parameter-model 3 (PM3) semiempirical Hamiltonian so that calculations with the improved Hamiltonian and employing restricted open-shell wave functions agree with the higher accuracy data. Using this specific-reaction-parameter PM3 semiempirical Hamiltonian (SRP-PM3), we investigate the reaction dynamics by propagating quasiclassical trajectories. The results of our calculations using the SRP-PM3 Hamiltonian are compared with experiments and with the estimates of two recently reported potential-energy surfaces. The trajectory calculations using the SRP-PM3 Hamiltonian reproduce quantitatively the measured HF vibrational distributions. The calculations also agree with the experimental HF rotational distributions and capture the essential features of the excitation function. The results of the SRP semiempirical Hamiltonian developed here clearly improve over those using the two prior potential-energy surfaces and suggest that reparametrization of semiempirical Hamiltonians is a promising strategy to develop accurate potential-energy surfaces for reaction dynamics studies of polyatomic systems.
引用
收藏
页数:11
相关论文
共 47 条
[1]  
Ahlswede B, 1999, J COMPUT CHEM, V20, P563, DOI 10.1002/(SICI)1096-987X(19990430)20:6<563::AID-JCC1>3.0.CO
[2]  
2-2
[3]   An investigation of the F+H2 reaction based on a full ab initio description of the open-shell character of the F(2P) atom [J].
Alexander, MH ;
Manolopoulos, DE ;
Werner, HJ .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (24) :11084-11100
[4]  
ATKINSON R, 1992, J PHYS CHEM REF DATA, V21, P1380
[5]  
Bolton K., 1998, MODERN METHODS MULTI, P143
[6]   CALCULATION OF SMALL MOLECULAR INTERACTIONS BY DIFFERENCES OF SEPARATE TOTAL ENERGIES - SOME PROCEDURES WITH REDUCED ERRORS [J].
BOYS, SF ;
BERNARDI, F .
MOLECULAR PHYSICS, 1970, 19 (04) :553-&
[7]   Theory and range of modern semiempirical molecular orbital methods [J].
Bredow, T ;
Jug, K .
THEORETICAL CHEMISTRY ACCOUNTS, 2005, 113 (01) :1-14
[8]   Crossed beams and theoretical studies of the dynamics of hyperthermal collisions between Ar and ethane [J].
Brunsvold, AL ;
Garton, DJ ;
Minton, TK ;
Troya, D ;
Schatz, GC .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (23) :11702-11714
[9]   Quasiclassical trajectory study of the F+CH4 reaction dynamics on a dual-level interpolated potential energy surface [J].
Castillo, JF ;
Aoiz, FJ ;
Bañares, L ;
Martinez-Nuñez, E ;
Fernández-Ramos, A ;
Vazquez, S .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (38) :8459-8470
[10]   Molecular potential-energy surfaces for chemical reaction dynamics [J].
Collins, MA .
THEORETICAL CHEMISTRY ACCOUNTS, 2002, 108 (06) :313-324