Exploration of the pore structure of a peptide-gated Na+ channel

被引:29
作者
Poët, M
Tauc, M
Lingueglia, E
Cance, P
Poujeol, P
Lazdunski, M
Counillon, L
机构
[1] Univ Nice, Fac Sci, Lab Physiol Cellulaire & Mol, CNRS,UMR 6548, F-06108 Nice, France
[2] Univ Nice, Inst Pharmacol Mol & Cellulaire, CNRS, UMR 6097, F-06560 Valbonne, France
关键词
ENac; degenerins; FMRF-amide; ligand-gated channel; pore structure; substituted cysteine accessibility method;
D O I
10.1093/emboj/20.20.5595
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The FMRF-amide-activated sodium channel (FaNaC), a member of the ENaC/Degenerin family, is a homotetramer, each subunit containing two transmembrane segments. We changed independently every residue of the first transmembrane segment (TMI) into a cysteine and tested each position's accessibility to the cysteine covalent reagents MTSET and MTSES. Eleven mutants were accessible to the cationic MTSET, showing that TMI faces the ion translocation pathway. This was confirmed by the accessibility of cysteines present in the acid-sensing ion channels and other mutations introduced in FaNaC TM1. Modification of accessibilities for positions 69, 71 and 72 in the open state shows that the gating mechanism consists of the opening of a constriction close to the intracellular side. The anionic MTSES did not penetrate into the channel, indicating the presence of a charge selectivity filter in the outer vestibule. Furthermore, amiloride inhibition resulted in the channel occlusion in the middle of the pore. Summarizing, the ionic pore of FaNaC includes a large aqueous cavity, with a charge selectivity filter in the outer vestibule and the gate close to the interior.
引用
收藏
页码:5595 / 5602
页数:8
相关论文
共 31 条
[1]   ACETYLCHOLINE-RECEPTOR CHANNEL STRUCTURE PROBED IN CYSTEINE-SUBSTITUTION MUTANTS [J].
AKABAS, MH ;
STAUFFER, DA ;
XU, M ;
KARLIN, A .
SCIENCE, 1992, 258 (5080) :307-310
[2]   Neuropeptide FF and FMRFamide potentiate acid-evoked currents from sensory neurons and proton-gated DEG/ENaC channels [J].
Askwith, CC ;
Cheng, C ;
Ikuma, M ;
Benson, C ;
Price, MP ;
Welsh, MJ .
NEURON, 2000, 26 (01) :133-141
[3]  
Benson CJ, 1999, CIRC RES, V84, P921
[4]   MEMBRANE TOPOLOGY OF THE EPITHELIAL SODIUM-CHANNEL IN INTACT-CELLS [J].
CANESSA, CM ;
MERILLAT, AM ;
ROSSIER, BC .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1994, 267 (06) :C1682-C1690
[5]   THE IDENTIFICATION AND SUPPRESSION OF INHERITED NEURODEGENERATION IN CAENORHABDITIS-ELEGANS [J].
CHALFIE, M ;
WOLINSKY, E .
NATURE, 1990, 345 (6274) :410-416
[6]   Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1 [J].
Chang, SS ;
Grunder, S ;
Hanukoglu, A ;
Rosler, A ;
Mathew, PM ;
Hanukoglu, I ;
Schild, L ;
Lu, Y ;
Shimkets, RA ;
NelsonWilliams, C ;
Rossier, BC ;
Lifton, RP .
NATURE GENETICS, 1996, 12 (03) :248-253
[7]   The Phe-Met-Arg-Phe-amide-activated sodium channel is a tetramer [J].
Coscoy, S ;
Lingueglia, E ;
Lazdunski, M ;
Barbry, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (14) :8317-8322
[8]   The pre-transmembrane 1 domain of acid-sensing ion channels participates in the ion pore [J].
Coscoy, S ;
de Weille, JR ;
Lingueglia, E ;
Lazdunski, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (15) :10129-10132
[9]  
Cottrell GA, 1997, J EXP BIOL, V200, P2377
[10]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77