Glucose 6-phosphate causes translocation of phosphorylase in hepatocytes and inactivates the enzyme synergistically with glucose

被引:33
作者
Aiston, S [1 ]
Green, A [1 ]
Mukhtar, M [1 ]
Agius, L [1 ]
机构
[1] Newcastle Univ, Dept Diabet, Sch Clin Med Sci, Sch Med, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
关键词
glucose; 6-phosphate; glycogen synthase; hepatocyte; phosphorylase; translocation;
D O I
10.1042/BJ20031191
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The role of glucose 6-P (glucose 6-phosphate) in regulating the activation state of glycogen synthase and its translocation is well documented. In the present study, we investigated the effects of glucose 6-P on the activation state and compartmentation of phosphorylase in hepatocytes. Glucose 6-P levels were modulated in hepatocytes by glucokinase overexpression or inhibition with 5-thioglucose and the effects of AMP were tested using AICAR (5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside), which is metabolized to an AMP analogue. Inhibition of glucokinase partially counteracted the effect of glucose both on the inactivation of phosphorylase and on the translocation of phosphorylase a from a soluble to a particulate fraction. The increase in glucose 6-P caused by glucokinase overexpression caused translocation of phosphorylase a to the pellet and had additive effects with glucose on inactivation of phosphorylase. It decreased the glucose concentration that caused half-maximal inactivation from 20 to 11 mM, indicating that it acts synergistically with glucose. AICAR activated phosphorylase and counteracted the effect of glucose 6-P on phosphorylase inactivation. However, it did not counteract translocation of phosphorylase by glucose 6-P. Glucose 6-P and AICAR had opposite effects on the activation state of glycogen synthase, but they had additive effects on translocation of the enzyme to the pellet. There was a direct correlation between the translocation of phosphorylase a and of glycogen synthase to the pellet, suggesting that these enzymes translocate in tandem. In conclusion, glucose 6-P causes both translocation of phosphorylase and inactivation, indicating a more complex role in the regulation of glycogen metabolism than can be explained from regulation of glycogen synthase alone.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 44 条