The BRST-antibracket cohomology of 2D gravity conformally coupled to scalar matter

被引:20
作者
Brandt, F
Troost, W
VanProeyen, A
机构
[1] Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, B-3001 Leuven
关键词
D O I
10.1016/0550-3213(96)00030-2
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute completely the BRST-antibracket cohomology on local functionals in two-dimensional Weyl-invariant gravity for given classical field content (two-dimensional metric and scalar matter fields) and gauge symmetries (two-dimensional diffeomorphisms and local Weyl transformations). This covers the determination of all classical actions, of all their rigid symmetries, of all background charges and of all candidate gauge anomalies. In particular we show that the antifield dependence can be entirely removed from the anomalies and that, if the target space has isometries, the condition for the absence of matter-field-dependent Weyl anomalies is more general than the familiar 'dilaton equations'.
引用
收藏
页码:353 / 408
页数:56
相关论文
共 62 条
[1]  
Anderson I. M., 1992, Contemporary Mathematics, V132, P51, DOI 10.1090/conm/132/1188434
[2]  
Anderson Ian M., 1994, VARIATIONAL BICOMPLE
[3]   ON THE EXISTENCE OF GLOBAL VARIATIONAL-PRINCIPLES [J].
ANDERSON, IM ;
DUCHAMP, T .
AMERICAN JOURNAL OF MATHEMATICS, 1980, 102 (05) :781-868
[4]  
[Anonymous], LECT NOTES MATH
[5]   DIFFEOMORPHISM COHOMOLOGY IN BELTRAMI PARAMETRIZATION .2. THE 1-FORMS [J].
BANDELLONI, G ;
LAZZARINI, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (01) :1-29
[6]   DIFFEOMORPHISM COHOMOLOGY IN BELTRAMI PARAMETRIZATION [J].
BANDELLONI, G ;
LAZZARINI, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (12) :5413-5440
[7]   CONSISTENT AND COVARIANT ANOMALIES IN GAUGE AND GRAVITATIONAL THEORIES [J].
BARDEEN, WA ;
ZUMINO, B .
NUCLEAR PHYSICS B, 1984, 244 (02) :421-453
[8]   LOCAL BRST COHOMOLOGY IN EINSTEIN-YANG-MILLS THEORY [J].
BARNICH, G ;
BRANDT, F ;
HENNEAUX, M .
NUCLEAR PHYSICS B, 1995, 455 (1-2) :357-408
[9]   CONSISTENT COUPLINGS BETWEEN FIELDS WITH A GAUGE FREEDOM AND DEFORMATIONS OF THE MASTER EQUATION [J].
BARNICH, G ;
HENNEAUX, M .
PHYSICS LETTERS B, 1993, 311 (1-4) :123-129
[10]   LOCAL BRST COHOMOLOGY IN THE ANTIFIELD FORMALISM .1. GENERAL THEOREMS [J].
BARNICH, G ;
BRANDT, F ;
HENNEAUX, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 174 (01) :57-91