Topological analysis of DcuA, an anaerobic C4-dicarboxylate transporter of Escherichia coli

被引:20
作者
Golby, P
Kelly, DJ
Guest, JR
Andrews, SC
机构
[1] Univ Reading, Sch Anim & Microbial Sci, Reading RG6 6AJ, Berks, England
[2] Univ Sheffield, Krebs Inst Biomolec Res, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England
关键词
D O I
10.1128/JB.180.18.4821-4827.1998
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Escherichia coli possesses three independent anaerobic C-4-dicarboxylate transport systems encoded by the dcuA, dcuB, and dcuC genes. The dcuA and dcuB genes encode related integral inner-membrane proteins, DcuA and DcuB (433 and 446 amino acid residues), which have 36% amino acid sequence identity. A previous amino acid sequence-based analysis predicted that DcuA and DcuB contain either 12 or 14 transmembrane helices, with the N and C termini located in the cytoplasm or periplasm (S. Six, S. C. Andrews, G. Unden, and J. R. Guest, J. Bacteriol. 176:6470-6478, 1994). These predictions were tested by constructing and analyzing 66 DcuA-BlaM fusions in which C terminally truncated forms of DcuA are fused to a beta-lactamase protein lacking the N-terminal signal peptide. The resulting topological model differs from those previously predicted. It has just 10 transmembrane helices and a central, 80-residue cytoplasmic loop between helices 5 and 6. The N and C termini are located in the periplasm and the predicted orientation is consistent with the "positive-inside rule." Two highly hydrophobic segments are not membrane spanning: one is in the cytoplasmic loop; the other is in the C-terminal periplasmic region. The topological model obtained for DcuA can be applied to DcuA homologues in other bacteria as well as to DcuB. Overproduction of DcuA to 15% of inner-membrane protein was obtained with the lacUV5-promoter-based plasmid, pYZ4.
引用
收藏
页码:4821 / 4827
页数:7
相关论文
共 34 条
[1]  
ANDREWS SS, UNPUB
[2]   Utilization of orotate as a pyrimidine source by Salmonella typhimurium and Escherichia coli requires the dicarboxylate transport protein encoded by dctA [J].
Baker, KE ;
Ditullio, KP ;
Neuhard, J ;
Klein, RA .
JOURNAL OF BACTERIOLOGY, 1996, 178 (24) :7099-7105
[3]   A VECTOR FOR THE CONSTRUCTION OF TRANSLATIONAL FUSIONS TO TEM BETA-LACTAMASE AND THE ANALYSIS OF PROTEIN EXPORT SIGNALS AND MEMBRANE-PROTEIN TOPOLOGY [J].
BROOMESMITH, JK ;
SPRATT, BG .
GENE, 1986, 49 (03) :341-349
[4]   LAC PERMEASE OF ESCHERICHIA-COLI - TOPOLOGY AND SEQUENCE ELEMENTS PROMOTING MEMBRANE INSERTION [J].
CALAMIA, J ;
MANOIL, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (13) :4937-4941
[5]  
DEVEREAUX J, 1989, GCG SEQUENCE ANAL SO
[6]   ANALYSIS OF MEMBRANE AND SURFACE PROTEIN SEQUENCES WITH THE HYDROPHOBIC MOMENT PLOT [J].
EISENBERG, D ;
SCHWARZ, E ;
KOMAROMY, M ;
WALL, R .
JOURNAL OF MOLECULAR BIOLOGY, 1984, 179 (01) :125-142
[7]   TRANSPORT OF C-4-DICARBOXYLATES BY ANAEROBICALLY GROWN ESCHERICHIA-COLI - ENERGETICS AND MECHANISM OF EXCHANGE, UPTAKE AND EFFLUX [J].
ENGEL, P ;
KRAMER, R ;
UNDEN, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1994, 222 (02) :605-614
[8]   ANAEROBIC FUMARATE TRANSPORT IN ESCHERICHIA-COLI BY AN FNR-DEPENDENT DICARBOXYLATE UPTAKE SYSTEM WHICH IS DIFFERENT FROM THE AEROBIC DICARBOXYLATE UPTAKE SYSTEM [J].
ENGEL, P ;
KRAMER, R ;
UNDEN, G .
JOURNAL OF BACTERIOLOGY, 1992, 174 (17) :5533-5539
[9]  
GRIBSKOV M, 1990, METHOD ENZYMOL, V183, P146
[10]  
GRIFFITH J K, 1992, Current Opinion in Cell Biology, V4, P684, DOI 10.1016/0955-0674(92)90090-Y