Evidence for the heterolobosea from phylogenetic analysis of genes encoding glyceraldehyde-3-phosphate dehydrogenase

被引:34
作者
Roger, AJ
Smith, MW
Doolittle, RF
Doolittle, WF
机构
[1] NCI,SCI APPLICAT INT CORP,CTR RES & DEV,FREDERICK,MD 21702
[2] UNIV CALIF SAN DIEGO,CTR MOL GENET,SAN DIEGO,CA 92093
关键词
Amoebae; endosymbiosis; eukaryotic evolution; lateral gene transfer; Mycetozoa; protein evolution; protist systematics; slime mould;
D O I
10.1111/j.1550-7408.1996.tb04507.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The phylogenetic relationships between major slime mould groups and the identification of their unicellular relatives has been a subject of controversy for many years. Traditionally, it has been assumed that two slime mould groups, the acrasids and the dictyostelids were related by Virtue of their cellular slime mould habit; a view still endorsed by at least one current classification scheme. However, a decade ago, on the basis of detailed ultrastructural resemblances, it was proposed that acrasids of the family Acrasidae were not relatives of other slime moulds but instead related to a group of mostly free-living unicellular amoebae, the Schizopyrenida. The class Heterolobosea was created to contain these organisms and has since figured in many discussions of protist evolution. We sought to test the validity of Heterolobosea by characterizing homologs of the highly conserved glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from an acrasid, Acrasis rosea; a dictyostelid, Dictyostelium discoideum; and the schizopyrenid Naegleria andersoni. Phylogenetic analysis of these and other GAPDH sequences, using maximum parsimony, neighbour-joining distance and maximum likelihood methods strongly supports the Heterolobosea hypothesis and discredits the concept of a cellular slime mould grouping. Moreover, all of our analyses place Dictyostelium discoideum as a relatively recently originating lineage, most closely related to the Metazoa, similar to other recently published phylogenies of protein-coding genes. However, GAPDH phylogenies do not show robust branching orders for most of the relationships between major groups. We propose that several of the incongruencies observed between GAPDH and other molecular phylogenies are artifacts resulting from substitutional saturation of this enzyme.
引用
收藏
页码:475 / 485
页数:11
相关论文
共 67 条
[1]  
ADACHI J, 1992, MOLPHY PROGRAMS MOL
[2]  
[Anonymous], 1996, PHYLIP PHYLOGENY INF
[3]  
[Anonymous], 1902, P BOSTON SOC NAT HIS
[4]   ANIMALS AND FUNGI ARE EACH OTHERS CLOSEST RELATIVES - CONGRUENT EVIDENCE FROM MULTIPLE PROTEINS [J].
BALDAUF, SL ;
PALMER, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (24) :11558-11562
[5]   DATING THE EVOLUTIONARY RADIATIONS OF THE TRUE FUNGI [J].
BERBEE, ML ;
TAYLOR, JW .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1993, 71 (08) :1114-1127
[6]   ACTIN CODING REGIONS - GENE FAMILY EVOLUTION AND USE AS A PHYLOGENETIC MARKER [J].
BHATTACHARYA, D ;
EHLTING, J .
ARCHIV FUR PROTISTENKUNDE, 1995, 145 (3-4) :155-164
[7]  
BLANTON RL, 1989, HDB PROTOCTISTA, P75
[8]   NUCLEOTIDE-SEQUENCE OF THE ESCHERICHIA-COLI GAP GENE - DIFFERENT EVOLUTIONARY BEHAVIOR OF THE NAD+-BINDING DOMAIN AND THE CATALYTIC DOMAIN OF D-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE [J].
BRANLANT, G ;
BRANLANT, C .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1985, 150 (01) :61-66
[9]   Higher-plant chloroplast and cytosolic 3-phosphoglycerate kinases: A case of endosymbiotic gene replacement [J].
Brinkmann, H ;
Martin, W .
PLANT MOLECULAR BIOLOGY, 1996, 30 (01) :65-75
[10]   Evolutionary Relationships within the Fungi: Analyses of Nuclear Small Subunit rRNA Sequences [J].
Bruns, Thomas D. ;
Vilgalys, Rytas ;
Barns, Susan M. ;
Gonzalez, Dolores ;
Hibbett, David S. ;
Lane, David J. ;
Simon, Luc ;
Stickel, Shawn ;
Szaro, Timothy M. ;
Weisburg, William G. ;
Sogin, Mitchell L. .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 1992, 1 (03) :231-241