Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice

被引:161
作者
Benchaouir, Rachid [3 ]
Meregalli, Mirella [3 ]
Farini, Andrea [3 ]
D'Antona, Giuseppe
Belicchi, Marzia [3 ]
Goyenvalle, Aurelie [5 ]
Battistelli, Maurizio [3 ]
Bresolin, Nereo [3 ]
Bottinelli, Roberto
Garcia, Luis [1 ,2 ,5 ]
Torrente, Yvan [3 ,4 ]
机构
[1] Genethon, CNRS, UMR 8115, Grp Maladie Duchenne, F-91000 Evry, France
[2] Univ Paris 06, INSERM, Fac Med, UMR S787, F-75634 Paris, France
[3] Univ Milan, Fdn IRCCS, Osped Maggiore Policlin, Ctr Dino Ferrari,Stem Cell Lab,Dept Neurol Sci, I-20122 Milan, Italy
[4] Univ Milan, Ctr Interdipartimentale Ric Cellule Staminali, UNISTEM, I-20133 Milan, Italy
[5] Univ Pavia, Human Physiol Unit, Dept Expt Med, I-27100 Pavia, Italy
关键词
D O I
10.1016/j.stem.2007.09.016
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Duchenne muscular dystrophy (DMD) is a hereditary disease caused by mutations that disrupt the dystrophin mRNA reading frame. In some cases, forced exclusion (skipping) of a single exon can restore the reading frame, giving rise to a shorter, but still functional, protein. In this study, we constructed lentiviral vectors expressing antisense oligonucleotides in order to induce an efficient exon skipping and to correct the initial frameshift caused by the DMD deletion of CD133+ stem cells. The intramuscular and intra-arterial delivery of genetically corrected CD133 expressing myogenic progenitors isolated from the blood and muscle of DMD patients results in a significant recovery of muscle morphology, function, and dystrophin expression in scid/mdx mice. These data demonstrate that autologous engrafting of blood or muscle-derived CD133+ cells, previously genetically modified to reexpress a functional dystrophin, represents a promising approach for DMD.
引用
收藏
页码:646 / 657
页数:12
相关论文
共 45 条
[1]   Targeted exon skipping as a potential gene correction therapy for Duchenne muscular dystrophy [J].
Aartsma-Rus, A ;
Bremmer-Bout, M ;
Janson, AAM ;
den Dunnen, JT ;
van Ommen, GJB ;
van Deutekom, JCT .
NEUROMUSCULAR DISORDERS, 2002, 12 :S71-S77
[2]   Functional analysis of 114 exon-internal AONs for targeted DMD exon skipping: Indication for steric hindrance of SR protein binding sites [J].
Aartsma-Rus, A ;
De Winter, CL ;
Janson, AAM ;
Kaman, WE ;
Van Ommen, GJB ;
Den Dunnen, JT ;
van Deutekom, JCT .
OLIGONUCLEOTIDES, 2005, 15 (04) :284-297
[3]   Dystrophin expression in muscles of mdx mice after adenovirus-mediated in vivo gene transfer [J].
Acsadi, G ;
Lochmuller, H ;
Jani, A ;
Huard, J ;
Massie, B ;
Prescott, S ;
Simoneau, M ;
Petrof, BJ ;
Karpati, G .
HUMAN GENE THERAPY, 1996, 7 (02) :129-140
[4]   Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source [J].
Beauchamp, JR ;
Morgan, JE ;
Pagel, CN ;
Partridge, TA .
JOURNAL OF CELL BIOLOGY, 1999, 144 (06) :1113-1121
[5]   Combinatorial administration of molecules that simultaneously inhibit angiogenesis and invasion leads to increased therapeutic efficacy in mouse models of malignant glioma [J].
Bello, L ;
Lucini, V ;
Costa, F ;
Pluderi, M ;
Giussani, C ;
Acerbi, F ;
Carrabba, G ;
Pannacci, M ;
Caronzolo, D ;
Grosso, S ;
Shinkaruk, S ;
Colleoni, F ;
Canron, X ;
Tomei, G ;
Deleris, G ;
Bikfalvi, A .
CLINICAL CANCER RESEARCH, 2004, 10 (13) :4527-4537
[6]   The evolving concept of a stem cell: Entity or function? [J].
Blau, HM ;
Brazelton, TR ;
Weimann, JM .
CELL, 2001, 105 (07) :829-841
[7]   A lentiviral vector encoding the human Wiskott Aldrich syndrome protein corrects immune and cytoskeletal defects in WASP knockout mice [J].
Charrier, S ;
Stockholm, D ;
Seye, K ;
Opolon, P ;
Taveau, M ;
Gross, DA ;
Bucher-Laurent, S ;
Delenda, C ;
Vainchenker, W ;
Danos, O ;
Galy, A .
GENE THERAPY, 2005, 12 (07) :597-606
[8]   Body-wide gene therapy of Duchenne muscular dystrophy in the mdx mouse model [J].
Denti, MA ;
Rosa, A ;
D'Antona, G ;
Sthandier, O ;
De Angelis, FG ;
Nicoletti, C ;
Allocca, M ;
Pansarasa, O ;
Parente, V ;
Musarò, A ;
Auricchio, A ;
Bottinelli, R ;
Bozzoni, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (10) :3758-3763
[9]   Bone marrow stromal cells generate muscle cells and repair muscle degeneration [J].
Dezawa, M ;
Ishikawa, H ;
Itokazu, Y ;
Yoshihara, T ;
Hoshino, M ;
Takeda, S ;
Ide, C ;
Nabeshima, Y .
SCIENCE, 2005, 309 (5732) :314-317
[10]  
Dickinson K, 2002, SIGHT SOUND, V12, P40