Molecular determinants and role of an anion binding site in the external mouth of the CFTR chloride channel pore

被引:42
作者
Gong, XD [1 ]
Lindsell, P [1 ]
机构
[1] Dalhousie Univ, Dept Physiol & Biophys, Halifax, NS B3H 4H7, Canada
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2003年 / 549卷 / 02期
关键词
D O I
10.1113/jphysiol.2002.038232
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Chloride permeation through the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is blocked by highly lyotropic permeant anions which bind tightly within the pore. Here we show that several different substitutions of a positively charged amino acid residue, arginine R334, in the putative outer mouth of the CFTR pore, greatly reduce the block caused by lyotropic Au(CN)(2)(-) ions applied to the intracellular side of the channel. Fixed positive charge at this site appears to play a role in Au(CN)(2)(-) binding, as judged by multiple substitutions of differently charged amino acid side chains and also by the pH dependence of block conferred by the R334H mutant. However, non-charge-dependent effects also appear to contribute to Au(CN)(2)(-) binding. Mutation of R334 also disrupts the apparent electrostatic interaction between intracellular Au(CN)(2)(-) ions and extracellular permeant anions, an interaction which normally acts to relieve channel block. All six mutations studied at R334 significantly weakened this interaction, suggesting that arginine possesses a unique ability to coordinate ion-ion interactions at this site in the pore. Our results suggest that lyotropic anions bind tightly to a site in the outer mouth of the CFTR pore that involves interaction with a fixed positive charge. Binding to this site is also involved in coordination of multiple permeant anions within the pore, suggesting that anion binding in the outer mouth of the pore is an important aspect in the normal anion permeation mechanism.
引用
收藏
页码:387 / 397
页数:11
相关论文
共 33 条
[1]   Energetics of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
NATURE, 2001, 414 (6859) :73-77
[2]   Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment [J].
Cheung, M ;
Akabas, MH .
BIOPHYSICAL JOURNAL, 1996, 70 (06) :2688-2695
[3]   The EEEE locus is the sole high-affinity Ca2+ binding structure in the pore of a voltage-gated Ca2+ channel -: Block by Ca2+ entering from the intracellular pore entrance [J].
Cibulsky, SM ;
Sather, WA .
JOURNAL OF GENERAL PHYSIOLOGY, 2000, 116 (03) :349-362
[4]   Cystic fibrosis-associated mutations at arginine 347 alter the pore architecture of CFTR - Evidence for disruption of a salt bridge [J].
Cotten, JF ;
Welsh, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (09) :5429-5435
[5]  
Dawson David C., 1999, Physiological Reviews, V79, pS47
[6]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[7]   X-ray structure of a CIC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity [J].
Dutzler, R ;
Campbell, EB ;
Cadene, M ;
Chait, BT ;
MacKinnon, R .
NATURE, 2002, 415 (6869) :287-294
[8]   CA2+ CHANNEL SELECTIVITY AT A SINGLE-LOCUS FOR HIGH-AFFINITY CA2+ INTERACTIONS [J].
ELLINOR, PT ;
YANG, J ;
SATHER, WA ;
ZHANG, JF ;
TSIEN, RW .
NEURON, 1995, 15 (05) :1121-1132
[9]   Ion permeation and selectivity in ClC-type chloride channels [J].
Fahlke, C .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2001, 280 (05) :F748-F757
[10]   Coupled movement of permeant and blocking ions in the CFTR chloride channel pore [J].
Gong, XD ;
Lindsell, P .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 549 (02) :375-385