Human β-globin locus control region HS5 contains CTCF- and developmental stage-dependent enhancer-blocking activity in erythroid cells

被引:48
作者
Tanimoto, K
Sugiura, A
Omori, A
Felsenfeld, G
Engel, JD
Fukamizu, A
机构
[1] Univ Tsukuba, Ctr Tsukuba Adv Res Alliance, Inst Appl Biochem, Tsukuba, Ibaraki 3058577, Japan
[2] NIDDKD, NIH, Bethesda, MD 20892 USA
[3] Univ Michigan, Sch Med, Ann Arbor, MI 48109 USA
关键词
TRANSGENIC MICE; INTERGENIC TRANSCRIPTION; HYPERSENSITIVE SITES; GENE-EXPRESSION; RECEPTOR GENES; INSULATOR; MOUSE; POSITION; ELEMENTS; ORIENTATION;
D O I
10.1128/MCB.23.24.8946-8952.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human beta-globin locus contains five developmentally regulated beta-type globin genes. All five genes depend on the locus control region (LCR), located at the 5' end of the locus, for abundant globin gene transcription. The LCR is composed of five DNase I-hypersensitive sites (HSs), at least a subset of which appear to cooperate to form a holocomplex in activating genes within the locus. We previously tested the requirement for proper LCR polarity by inverting it in human beta-globin yeast artificial chromosome transgenic mice and observed reduced expression of all the beta-type globin genes regardless of developmental stage. This phenotype clearly demonstrated an orientation-dependent activity of the LCR, although the mechanistic basis for the observed activity was obscure. Here, we describe genetic evidence demonstrating that human HS5 includes enhancer-blocking (insulator) activity that is both CTCF and developmental stage dependent. Curiously, we also observed an attenuating activity in HS5 that was specific to the epsilon-globin gene at the primitive stage and was independent of the HS5 CTCF binding site. These observations demonstrate that the phenotype observed in the LCR-inverted locus was in part attributable to placing the HS5 insulator between the LCR HS enhancers (HS1 to HS4) and the promoter of the beta-globin gene.
引用
收藏
页码:8946 / 8952
页数:7
相关论文
共 39 条
[1]   Intergenic transcription and transinduction of the human beta-globin locus [J].
Ashe, HL ;
Monks, J ;
Wijgerde, M ;
Fraser, P ;
Proudfoot, NJ .
GENES & DEVELOPMENT, 1997, 11 (19) :2494-2509
[2]   The protein CTCF is required for the enhancer blocking activity of vertebrate insulators [J].
Bell, AC ;
West, AG ;
Felsenfeld, G .
CELL, 1999, 98 (03) :387-396
[3]   Description and targeted deletion of 5′ hypersensitive site 5 and 6 of the mouse β-globin locus control region [J].
Bender, MA ;
Reik, A ;
Close, J ;
Telling, A ;
Epner, E ;
Fiering, S ;
Hardison, R ;
Groudine, M .
BLOOD, 1998, 92 (11) :4394-4403
[4]   Conservation of sequence and structure flanking the mouse and human β-globin loci:: The β-globin genes are embedded within an array of odorant receptor genes [J].
Bulger, M ;
von Doorninck, JH ;
Saitoh, N ;
Telling, A ;
Farrell, C ;
Bender, MA ;
Felsenfeld, G ;
Axel, R ;
Groudine, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (09) :5129-5134
[5]   Comparative structural and functional analysis of the olfactory receptor genes flanking the human and mouse β-globin gene clusters [J].
Bulger, M ;
Bender, MA ;
van Doorninck, JH ;
Wertman, B ;
Farrell, CM ;
Felsenfeld, G ;
Groudine, M ;
Hardison, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14560-14565
[6]   Synergistic regulation of human beta-globin gene switching by locus control region elements HS3 and HS4 [J].
Bungert, J ;
Dave, U ;
Lim, KC ;
Lieuw, KH ;
Shavit, JA ;
Liu, QH ;
Engel, JD .
GENES & DEVELOPMENT, 1995, 9 (24) :3083-3096
[7]  
Bungert J, 1999, MOL CELL BIOL, V19, P3062
[8]   DEVELOPMENTAL REGULATION OF BETA-GLOBIN GENE SWITCHING [J].
CHOI, ORB ;
ENGEL, JD .
CELL, 1988, 55 (01) :17-26
[9]   Characterization of the chicken beta-globin insulator [J].
Chung, JH ;
Bell, AC ;
Felsenfeld, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (02) :575-580
[10]   A 5' ELEMENT OF THE CHICKEN BETA-GLOBIN DOMAIN SERVES AS AN INSULATOR IN HUMAN ERYTHROID-CELLS AND PROTECTS AGAINST POSITION EFFECT IN DROSOPHILA [J].
CHUNG, JH ;
WHITELEY, M ;
FELSENFELD, G .
CELL, 1993, 74 (03) :505-514