Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine

被引:196
作者
Lao, Zhiqiang [1 ]
Shen, Dinggang [1 ]
Liu, Dengfeng [4 ]
Jawad, Abbas F. [1 ,2 ]
Melhern, Elias R. [1 ]
Launer, Lenore J. [3 ]
Bryan, R. Nick [1 ]
Davatzikos, Christos [1 ]
机构
[1] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[2] Childrens Hosp Philadelphia, Dept Biostat, Philadelphia, PA 19104 USA
[3] NIA, Lab Epidemiol Demog & Biometry, Bethesda, MD 20892 USA
[4] Natl Lib Med, Lister Hill Natl Ctr Biomed Commun, Natl Inst Hlth, Bethesda, MD USA
关键词
white matter lesion segmentation; support vector machine; machine learning;
D O I
10.1016/j.acra.2007.10.012
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives. Brain lesions, especially white matter lesions (WMLs), are associated with cardiac and vascular disease, but also with normal aging. Quantitative analysis of WML in large clinical trials is becoming more and more important. Materials and Methods. In this article, we present a computer-assisted WML segmentation method, based on local features extracted from multiparametric magnetic resonance imaging (MRI) sequences (ie, T1-weighted, T2-weighted, proton density-weighted, and fluid attenuation inversion recovery MRI scans). A support vector machine classifier is first trained on expert-defined WMLs, and is then used to classify new scans. Results. Postprocessing analysis further reduces false positives by using anatomic knowledge and measures of distance from the training set. Conclusions. Cross-validation on a population of 35 patients from three different imaging sites with WMLs of varying sizes, shapes, and locations tests the robustness and accuracy of the proposed segmentation method, compared with the manual segmentation results from two experienced neuroradiologists.
引用
收藏
页码:300 / 313
页数:14
相关论文
共 64 条
[1]   Fully automatic segmentation of white matter hyperintensities in MR images of the elderly [J].
Admiraal-Behloul, F ;
van den Heuvel, DMJ ;
Olofsen, H ;
van Osch, MJP ;
van der Grond, J ;
van Buchem, MA ;
Relber, JHC .
NEUROIMAGE, 2005, 28 (03) :607-617
[2]  
Alfano B, 2000, J MAGN RESON IMAGING, V12, P799, DOI 10.1002/1522-2586(200012)12:6<799::AID-JMRI2>3.0.CO
[3]  
2-#
[4]   The relationship between type 2 diabetes and cognitive dysfunction: longitudinal studies and their methodological limitations [J].
Allen, KV ;
Frier, BM ;
Strachan, MWJ .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2004, 490 (1-3) :169-175
[5]   Probabilistic segmentation of brain tissue in MR imaging [J].
Anbeek, P ;
Vincken, KL ;
van Bochove, GS ;
van Osch, MJP ;
van der Grond, J .
NEUROIMAGE, 2005, 27 (04) :795-804
[6]   Probabilistic segmentation of white lesions in MR imaging [J].
Anbeek, P ;
Vincken, KL ;
van Osch, MJP ;
Bisschops, RHC ;
van der Grond, J .
NEUROIMAGE, 2004, 21 (03) :1037-1044
[7]  
[Anonymous], 1999, The Nature Statist. Learn. Theory
[8]   MRI OF THE BRAIN IN DIABETES-MELLITUS [J].
ARAKI, Y ;
NOMURA, M ;
TANAKA, H ;
YAMAMOTO, H ;
YAMAMOTO, T ;
TSUKAGUCHI, I ;
NAKAMURA, H .
NEURORADIOLOGY, 1994, 36 (02) :101-103
[9]   Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function [J].
Arvanitakis, Z ;
Wilson, RS ;
Bienias, JL ;
Evans, DA ;
Bennett, DA .
ARCHIVES OF NEUROLOGY, 2004, 61 (05) :661-666
[10]  
Bakshi R, 2000, AM J NEURORADIOL, V21, P503