Map with more than 100 coexisting low-period periodic attractors

被引:151
作者
Feudel, U
Grebogi, C
Hunt, BR
Yorke, JA
机构
[1] UNIV POTSDAM,MAX PLANCK ARBEITSGRP NICHTLINEARE DYNAM,D-14415 POTSDAM,GERMANY
[2] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
[3] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLLEGE PK,MD 20742
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 01期
关键词
D O I
10.1103/PhysRevE.54.71
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the qualitative behavior of a single mechanical rotor with a small amount of damping. This system may possess an arbitrarily large number of coexisting periodic attractors if the damping is small enough. The large number of stable orbits yields a complex structure of closely interwoven basins of attraction, whose boundaries fill almost the whole state space. Most of the attractors observed have low periods, because high period stable orbits generally have basins too small to be detected. We expect the complexity described here to be even more pronounced for higher-dimensional systems, like the double rotor, for which we find more than 1000 coexisting low-period periodic attractors.
引用
收藏
页码:71 / 81
页数:11
相关论文
共 26 条
[1]  
[Anonymous], [No title captured]
[2]   MULTIPLE COEXISTING ATTRACTORS, BASIN BOUNDARIES AND BASIC SETS [J].
BATTELINO, PM ;
GREBOGI, C ;
OTT, E ;
YORKE, JA ;
YORKE, ED .
PHYSICA D, 1988, 32 (02) :296-305
[3]  
CHEN G, 1986, PHYS REV A, V34, P2568, DOI 10.1103/PhysRevA.34.2568
[4]   CANDYS/QA - A SOFTWARE SYSTEM FOR QUALITATIVE ANALYSIS OF NONLINEAR DYNAMICAL SYSTEMS [J].
Feudel, Ulrike ;
Jansen, Wolfgang .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :773-794
[5]  
Gavrilov NK, 1972, MATH USSR SB, V17, P467, DOI [10.1070/sm1972v017n04abeh001597, DOI 10.1070/SM1972V017N04ABEH001597]
[6]   FINAL-STATE SENSITIVITY - AN OBSTRUCTION TO PREDICTABILITY [J].
GREBOGI, C ;
MCDONALD, SW ;
OTT, E ;
YORKE, JA .
PHYSICS LETTERS A, 1983, 99 (09) :415-418
[7]   MULTI-DIMENSIONED INTERTWINED BASIN BOUNDARIES - BASIN STRUCTURE OF THE KICKED DOUBLE ROTOR [J].
GREBOGI, C ;
KOSTELICH, E ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1987, 25 (1-3) :347-360
[8]  
GREBOGI C, 1988, LECT NOTES MATH, V1342, P220
[9]   METHOD FOR DETERMINING A STOCHASTIC TRANSITION [J].
GREENE, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (06) :1183-1201
[10]  
Lichtenberg A., 1992, Regular and Chaotic Motion