Temporal image reconstruction in electrical impedance tomography

被引:64
作者
Adler, Andy [1 ]
Dai, Tao
Lionheart, William R. B.
机构
[1] Carleton Univ, Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
electrical impedance tomography; regularization; image reconstruction;
D O I
10.1088/0967-3334/28/7/S01
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Electrical impedance tomography (EIT) calculates images of the body from body impedance measurements. While the spatial resolution of these images is relatively low, the temporal resolution of EIT data can be high. Most EIT reconstruction algorithms solve each data frame independently, although Kalman filter algorithms track the image changes across frames. This paper proposes a new approach which directly accounts for correlations between images in successive data frames. Image reconstruction is posed in terms of an augmented image x and measurement vector y, which concatenate the values from the d previous and future frames. Image reconstruction is then based on an augmented regularization matrix R, which accounts for a model of both the spatial and temporal correlations between image elements. Results are compared for reconstruction algorithms based on independent frames, Kalman filters and the proposed approach. For low values of the regularization hyperparameter, the proposed approach performs similarly to independent frames, but for higher hyperparameter values, it uses adjacent frame data to reduce reconstructed image noise.
引用
收藏
页码:S1 / S11
页数:11
相关论文
共 13 条
[1]   Uses and abuses of EIDORS: an extensible software base for EIT [J].
Adler, A ;
Lionheart, WRB .
PHYSIOLOGICAL MEASUREMENT, 2006, 27 (05) :S25-S42
[2]   Electrical impedance tomography: Regularized imaging and contrast detection [J].
Adler, A ;
Guardo, R .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1996, 15 (02) :170-179
[3]  
Cheney M, 1990, Int J Imaging Syst Technol, V2, P66, DOI 10.1002/ima.1850020203
[4]  
EICHENWALD EC, 1999, PEDIAT REV, V20, P127
[5]   Objective selection of hyperparameter for EIT [J].
Graham, BM ;
Adler, A .
PHYSIOLOGICAL MEASUREMENT, 2006, 27 (05) :S65-S79
[6]   Dynamic electrical impedance imaging of a chest phantom using the Kalman filter [J].
Kim, Bong Seok ;
Kim, Kyung Youn ;
Kao, Tzu-Jen ;
Newell, Jonathan C. ;
Isaacson, David ;
Saulnier, Gary J. .
PHYSIOLOGICAL MEASUREMENT, 2006, 27 (05) :S81-S91
[7]   Dynamic inverse obstacle problems with electrical impedance tomography [J].
Kim, KY ;
Kim, BS ;
Kim, MC ;
Kim, S .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2004, 66 (4-5) :399-408
[8]   The principles of software QRS detection [J].
Köhler, BU ;
Hennig, C ;
Orglmeister, R .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2002, 21 (01) :42-57
[9]   Electrical impedance tomography using the extended Kalman filter [J].
Trigo, FC ;
Gonzalez-Lima, R ;
Amato, MBP .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (01) :72-81
[10]   Tikhonov regularization and prior information in electrical impedance tomography [J].
Vauhkonen, M ;
Vadasz, D ;
Karjalainen, PA ;
Somersalo, E ;
Kaipio, JP .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (02) :285-293