Optical encryption system using hyperchaos generated by an optoelectronic wavelength oscillator

被引:100
作者
Larger, L
Goedgebuer, JP
Delorme, F
机构
[1] Georgia Tech Lorraine, CNRS, UMR 6603, F-57070 Metz, France
[2] CNET, France Telecom, F-92225 Bagneux, France
[3] Univ Franche Comte, Phys Mol Lab, CNRS, UMR 6603, F-25030 Besancon, France
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 06期
关键词
D O I
10.1103/PhysRevE.57.6618
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An optical encryption system using chaos in which a signal can be masked is reported. The particular design of the chaotic oscillator and the use of wavelength as the dynamical variable provides an accurate control of chaos and a potential number of encryption keys. Experimental results are reported and discussed.
引用
收藏
页码:6618 / 6624
页数:7
相关论文
共 25 条
[1]   COMMUNICATING WITH USE OF FILTERED, SYNCHRONIZED, CHAOTIC SIGNALS [J].
CARROLL, TL .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1995, 42 (02) :105-110
[2]  
CELKA P, 1995, IEEE T CIRCUITS SYST, V42, P1
[3]   DIGITAL-COMMUNICATION WITH SYNCHRONIZED CHAOTIC LASERS [J].
COLET, P ;
ROY, R .
OPTICS LETTERS, 1994, 19 (24) :2056-2058
[4]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[5]   Synchronization of chaotic nonlinear optical ring oscillators [J].
Daisy, R ;
Fischer, B .
OPTICS COMMUNICATIONS, 1997, 133 (1-6) :282-286
[6]  
DORIZZY B, 1986, PHYS REV A, V35, P328
[7]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[8]   THE DIMENSION OF CHAOTIC ATTRACTORS [J].
FARMER, JD ;
OTT, E ;
YORKE, JA .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) :153-180
[9]  
Feldmann U, 1996, INT J CIRC THEOR APP, V24, P551, DOI 10.1002/(SICI)1097-007X(199609/10)24:5<551::AID-CTA936>3.0.CO
[10]  
2-H