Epigenomic replication: linking epigenetics to DNA replication

被引:125
作者
McNairn, AJ [1 ]
Gilbert, DM [1 ]
机构
[1] SUNY Syracuse, Upstate Med Univ, Dept Biochem & Mol Biol, Syracuse, NY 13210 USA
关键词
D O I
10.1002/bies.10305
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The information contained within the linear sequence of bases (the genome) must be faithfully replicated in each cell cycle, with a balance of constancy and variation taking place over the course of evolution. Recently, it has become clear that additional information important for genetic regulation is contained within the chromatin proteins associated with DNA (the epigenome). Epigenetic information also must be faithfully duplicated in each cell cycle, with a balance of constancy and variation taking place during the course of development to achieve differentiation while maintaining identity within cell lineages. Both the genome and the epigenome are synthesized at the replication fork, so the events occurring during S-phase provide a critical window of opportunity for eliciting change or maintaining existing epigenetic states. Cells discriminate between different states of chromatin through the activities of proteins that selectively modify the structure of chromatin. Several recent studies report the localization of certain chromatin-modifying proteins to replication forks at specific times during S-phase. Since transcriptionally active and inactive chromosome domains generally replicate at different times during S-phase, this spatiotemporal regulation of chromatin assembly proteins may be an integral part of epigenetic inheritance. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:647 / 656
页数:10
相关论文
共 101 条
[1]   Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31 [J].
Aagaard, L ;
Laible, G ;
Selenko, P ;
Schmid, M ;
Dorn, R ;
Schotta, G ;
Kuhfittig, S ;
Wolf, A ;
Lebersorger, A ;
Singh, PB ;
Reuter, G ;
Jenuwein, T .
EMBO JOURNAL, 1999, 18 (07) :1923-1938
[2]   Chromodomains are protein-RNA interaction modules [J].
Akhtar, A ;
Zink, D ;
Becker, PB .
NATURE, 2000, 407 (6802) :405-409
[3]   Concurrent replication and methylation at mammalian origins of replication [J].
Araujo, FD ;
Knox, JD ;
Szyf, M ;
Price, GB ;
Zannis-Hadjopoulos, M .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (06) :3475-3482
[4]   Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin [J].
Bachman, KE ;
Rountree, MR ;
Baylin, SB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (34) :32282-32287
[5]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[6]   ATP-dependent nucleosomere modeling [J].
Becker, PB ;
Hörz, W .
ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 :247-273
[7]  
BICKMORE WA, 1995, J CELL SCI, V108, P2801
[8]   DNA methylation patterns and epigenetic memory [J].
Bird, A .
GENES & DEVELOPMENT, 2002, 16 (01) :6-21
[9]   DNA replication control through interaction of E2F-RB and the origin recognition complex [J].
Bosco, G ;
Du, W ;
Orr-Weaver, TL .
NATURE CELL BIOLOGY, 2001, 3 (03) :289-295
[10]   WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci [J].
Bozhenok, L ;
Wade, PA ;
Varga-Weisz, P .
EMBO JOURNAL, 2002, 21 (09) :2231-2241