Pruning belief decision tree methods in averaging and conjunctive approaches

被引:22
作者
Trabelsi, Salsabil [1 ]
Elouedi, Zied [1 ]
Melloull, Khaled [1 ]
机构
[1] Inst Super Gest Tunis, LARODEC, Tunis 2000, Tunisia
关键词
uncertainty; belief function theory; decision tree; belief decision tree; pruning;
D O I
10.1016/j.ijar.2007.02.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. From the procedures of building BDT, we mention the averaging and the conjunctive approaches. In this paper, we develop pruning methods of belief decision trees induced within averaging and conjunctive approaches where the objective is to cope with the problem of overfitting the data in BDT in order to improve its comprehension and to increase its quality of the classification. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:568 / 595
页数:28
相关论文
共 33 条
  • [1] CALCULATING DEMPSTER-SHAFER PLAUSIBILITY
    BARNETT, JA
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (06) : 599 - 602
  • [2] BENAMOR N, 2004, P INT C INF PROC UNC, V2, P881
  • [3] DEMPSTER AP, 1968, J ROY STAT SOC B, V30, P205
  • [4] Denoeux T, 1999, INT J APPROX REASON, V20, P79, DOI 10.1016/S0888-613X(98)10023-3
  • [5] Denoeux T, 2000, IEEE SYS MAN CYBERN, P2923, DOI 10.1109/ICSMC.2000.884444
  • [6] Belief decision trees: theoretical foundations
    Elouedi, Z
    Mellouli, K
    Smets, P
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2001, 28 (2-3) : 91 - 124
  • [7] Elouedi Z., 2002, 9 INT C INF PROC MAN, V1, 2002, P579
  • [8] ELOUEDI Z, 2006, RENC FRANC LOG FLOUE, P61
  • [9] ELOUEDI Z, 2001, P 10 C APPL STOCH MO, P404
  • [10] ELOUEDI Z, 2000, P INT C INF PROC MAN, V1, P141