G-covering subgroup systems for the classes of supersoluble and nilpotent groups

被引:67
作者
Guo, WB [1 ]
Shum, KP
Skiba, A
机构
[1] Xuzhou Normal Univ, Dept Math, Xuzhou 221009, Peoples R China
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
[3] Chinese Univ Hong Kong, Fac Sci, Shatin, Hong Kong, Peoples R China
[4] Fr Skaryna Gomel State Univ, Dept Math, Gomel 246019, BELARUS
关键词
Normal Subgroup; Maximal Subgroup; Nilpotent Group; Sylow Subgroup; Minimal Normal Subgroup;
D O I
10.1007/BF02783422
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a class of groups and G a group. We call a set Sigma of subgroups of G a G-covering subgroup system for the class F (or directly a F-covering subgroup system of G) if G is an element of F whenever every subgroup in Sigma is in F. In this paper, we provide some nontrivial sets of subgroups of a finite group G which are simultaneously G-covering subgroup systems for the classes of supersoluble and nilpotent groups.
引用
收藏
页码:125 / 138
页数:14
相关论文
共 10 条
[1]  
[Anonymous], IZV AKAD NAUK SSSR M
[2]   ON FINITE-GROUPS WITH NILPOTENT SYLOW-NORMALIZERS [J].
BIANCHI, M ;
MAURI, AGB ;
HAUCK, P .
ARCHIV DER MATHEMATIK, 1986, 47 (03) :193-197
[3]  
CUNIHIN SA, 1930, CR HEBD ACAD SCI, V191, P397
[4]   MINIMAL NICHT UBERAUFLOSBARE ENDLICHE GRUPPEN [J].
DOERK, K .
MATHEMATISCHE ZEITSCHRIFT, 1966, 91 (03) :198-&
[5]  
Doerk K., 1992, GRUYTER EXP MATH, V4
[6]   FINITE SOLUBLE GROUPS WITH SUPERSOLUBLE SYLOW NORMALIZERS [J].
FEDRI, V ;
SERENA, L .
ARCHIV DER MATHEMATIK, 1988, 50 (01) :11-18
[7]  
Gorenstein D., 1980, FINITE GROUPS
[8]  
Huppert B., 1967, Endliche Gruppen I, VI
[9]  
Huppert B., 1954, Math. Z, V60, P409, DOI DOI 10.1007/BF01187387
[10]  
Kargapolov MI, 1979, FUNDAMENTALS THEORY