On the Levy-Walk Nature of Human Mobility

被引:668
作者
Rhee, Injong [1 ]
Shin, Minsu [1 ]
Hong, Seongik [2 ]
Lee, Kyunghan [1 ]
Kim, Seong Joon [3 ]
Chong, Song [4 ]
机构
[1] N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA
[2] Samsung Adv Inst Technol, Yongin 446712, South Korea
[3] Samsung Elect, DMC Res Ctr, Suwon 443742, South Korea
[4] Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon 305701, South Korea
基金
美国国家科学基金会;
关键词
Delay-tolerant network (DTN); human mobility; Levy walk; mobile ad hoc network (MANET); mobile network; mobility model; FLIGHT SEARCH PATTERNS; NODE DISTRIBUTION; MODEL; DIFFUSION; DYNAMICS; MOTION;
D O I
10.1109/TNET.2011.2120618
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We report that human walk patterns contain statistically similar features observed in Levy walks. These features include heavy-tail flight and pause-time distributions and the super-diffusive nature of mobility. Human walks are not random walks, but it is surprising that the patterns of human walks and Levy walks contain some statistical similarity. Our study is based on 226 daily GPS traces collected from 101 volunteers in five different outdoor sites. The heavy-tail flight distribution of human mobility induces the super-diffusivity of travel, but up to 30 min to 1 h due to the boundary effect of people's daily movement, which is caused by the tendency of people to move within a predefined (also confined) area of daily activities. These tendencies are not captured in common mobility models such as random way point (RWP). To evaluate the impact of these tendencies on the performance of mobile networks, we construct a simple truncated Levy walk mobility (TLW) model that emulates the statistical features observed in our analysis and under which we measure the performance of routing protocols in delay-tolerant networks (DTNs) and mobile ad hoc networks (MANETs). The results indicate the following. Higher diffusivity induces shorter intercontact times in DTN and shorter path durations with higher success probability in MANET. The diffusivity of TLW is in between those of RWP and Brownian motion (BM). Therefore, the routing performance under RWP as commonly used in mobile network studies and tends to be overestimated for DTNs and underestimated for MANETs compared to the performance under TLW.
引用
收藏
页码:630 / 643
页数:14
相关论文
共 46 条
[1]   A new random walk model for PCS networks [J].
Akyildiz, IF ;
Lin, YB ;
Lai, WR ;
Chen, RJ .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2000, 18 (07) :1254-1260
[2]  
[Anonymous], GARM GPSMAP 60CSX US
[3]  
[Anonymous], COMPUT COMMUN REV
[4]  
[Anonymous], P IEEE INFOCOM PHOEN
[5]  
[Anonymous], P IEEE INFOCOM BARC, DOI DOI 10.1109/INFOCOM.2006.172
[6]  
[Anonymous], P IEEE INFOCOM BARC
[7]  
[Anonymous], 1996, MOBILE COMPUTING
[8]  
[Anonymous], P ACM MOBICOM
[9]  
[Anonymous], GLOMOSIM
[10]  
[Anonymous], LEVY WALK NATURE HUM