Brownian motion and random walk perturbed at extrema

被引:51
作者
Davis, B [1 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
关键词
reinforced random walk; perturbed Brownian motion;
D O I
10.1007/s004400050215
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let b(t) be Brownian motion. We shaw there is a unique adapted process x(t) which satisfies dx(t) = db(t) except when x(t) is at a maximum or a minimum, when it receives a push, the magnitudes and directions of the pushes being the parameters of the process. For some ranges of the parameters this is already known. We show that if a random walk close to b(t) is perturbed properly, its paths are close to those of x(t).
引用
收藏
页码:501 / 518
页数:18
相关论文
共 9 条
[1]  
CARMONA P, 1998, IN PRESS J LONDON MA
[2]   Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion [J].
Chaumont, L ;
Doney, RA .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (04) :519-534
[3]  
DAVIS B, 1997, ANN POBABILITY, V24, P207
[4]   WINDING OF BROWNIAN-MOTION AROUND CURVES IN SPACE [J].
LEGALL, JF ;
YOR, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 317 (02) :687-722
[5]   Perturbed Brownian motions [J].
Perman, M ;
Werner, W .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (03) :357-383
[6]   Generalized Ray-Knight theory and limit theorems for self-interacting random walks on Z [J].
Toth, B .
ANNALS OF PROBABILITY, 1996, 24 (03) :1324-1367
[7]  
Toth B., 1997, STUDIA SCI MATH HUNG, V33, P321
[8]  
TOTH B, 1997, IN PRESS PROB TH REL
[9]  
1997, LECT MATH ETH ZURICH