Distribution of mutual information

被引:27
作者
Abarbanel, HDI
Masuda, N
Rabinovich, MI [1 ]
Tumer, E
机构
[1] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, La Jolla, CA 92093 USA
[4] Univ Tokyo, Grad Sch Engn, Dept Math Engn & Informat Phys, Tokyo 1138656, Japan
基金
美国国家科学基金会;
关键词
Additive white noise - Average mutual information - Classical communication - Gaussians - In-phase - Mutual informations - Nonlinear source - Statistical criterion;
D O I
10.1016/S0375-9601(01)00128-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the analysis of time series from nonlinear sources, mutual information (MI) is used as a nonlinear statistical criterion for the selection of an appropriate time delay in time delay reconstruction of the state space. MI is a statistic over the sets of sequences associated with the dynamical source, and we examine here the distribution of MI, thus going beyond the familiar analysis of its average alone. We give for the first time the distribution of MI for a standard, classical communications channel with Gaussian, additive white noise. For time series analysis of a dynamical system, we show how to determine the distribution of MI and discuss the implications for the use of average mutual information (AMI) in selecting time delays in phase space reconstruction. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:368 / 373
页数:6
相关论文
共 10 条
[1]  
Abarbanel H, 1996, ANAL OBSERVED CHAOTI
[2]   Information transmission and recovery in neural communications channels [J].
Eguia, MC ;
Rabinovich, MI ;
Abarbanel, HDI .
PHYSICAL REVIEW E, 2000, 62 (05) :7111-7122
[3]  
FANO R, 1961, TRANSMISSION INFORMA
[4]   INDEPENDENT COORDINATES FOR STRANGE ATTRACTORS FROM MUTUAL INFORMATION [J].
FRASER, AM ;
SWINNEY, HL .
PHYSICAL REVIEW A, 1986, 33 (02) :1134-1140
[5]  
GALLAGHER RG, 1968, INFORMATION THEORY R
[6]  
Kantz H, 1997, Nonlinear Time Series Analysis
[7]  
OLVER FWJ, 1965, HDB MATH FUNCTIONS, pCH5
[8]   Measuring information transfer [J].
Schreiber, T .
PHYSICAL REVIEW LETTERS, 2000, 85 (02) :461-464
[9]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03) :379-423
[10]  
TURNER E, UNPUB PHYS REV E