Transition-metal nanocluster stabilization fundamental studies:: Hydrogen phosphate as a simple, effective, readily available, robust, and previously unappreciated stabilizer for well-formed, isolable, and redissolvable Ir(0) and other transition-metal nanoclusters

被引:65
作者
Özkar, S
Finke, RG [1 ]
机构
[1] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA
[2] Middle E Tech Univ, Dept Chem, TR-06531 Ankara, Turkey
关键词
D O I
10.1021/la0207522
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work tests the hypothesis that tridentate oxoanions are especially effective stabilizers of transition-metal nanoclusters when the O-O distance of the anions matches closely the M-M (M = metal) distance atop the nanocluster surface. Specifically, we test the hypothesis that HPO42- with its 2.5 Angstrom O-O distance is a very simple, effective, but previously unrecognized anion for the stabilization of transition-metal(O) nanoclusters such as those of Ir(O), where the Ir-Ir surface distance is ca. 2.6-2.7 Angstrom. This hypothesis is tested by the five criteria we recently developed. These criteria emphasize the ability of a given nanocluster-stabilizing anion to allow the formation of highly kinetically controlled, near-monodisperse (less than or equal to+/-15%) size distributions of nanoclusters and then to allow isolable and fully redissolvable nanoclusters that exhibit, once redispersed into solution, good catalytic activity and long catalytic lifetimes. The previously unknown precursor complex {[Bu4N] [(1,5-COD)Ir.HPO4]}(n), 1, was prepared and shown to be a preferred precursor for the reproducible formation of hydrogen phosphate- and tetrabutylammonium-stabilized transition-metal lr(O) nanoclusters. The nanocluster formation reaction was shown to follow the slow continuous nucleation (A --> B, rate constant k(1)) followed by fast autocatalytic surface growth (A + B --> 2B, rate constant k(2)) mechanism uncovered previously; this finding was then exploited by showing that nanocluster size control could be achieved as expected by adding excess HPO42- to lower the k(2)/k(1) ratio, resulting in the formation of smaller nanoclusters. A relatively rare experimental demonstration of the balanced reaction for nanocluster formation is also provided. Proton Sponge [i.e., 1,8-bis(dimethylamino)naphthalene] is shown to be a preferred scavenger of the 1 equiv of H+ byproduct formed from the H-2 reduction of the (1,5-COD)Ir(l)+ moiety in the nanocluster precursor to Ir(O) plus H+; positive effects of Proton Sponge on the resultant nanocluster catalytic lifetime are also demonstrated. Transmission electron microscopy (TEM) of the postcatalysis nanoclusters shows that agglomeration is a catalysis-inhibiting deactivation reaction. Overall, the results show that HPO42- is an effective anion for the formation, and then stabilization, of lr(O) transition-metal nanoclusters in acetone and with Bu4N+ countercations. More specifically, HPO42- rates alongside citrate(3-) in the developing series of anion efficacy for nanocluster formation, stabilization and catalytic activity: polyoxoanions > HPO42- similar to citrate(3-) > other commonly employed nanocluster-stabilizing anions. Since a reasonable match between the tridentate O-O distance in HPO42- and the M-M distances is present for the metals Fe, Co, Ni, Ru, Rh Ir, Pd, Re, Os, and Pt [i.e., the lattice size-matching criterion is fulfilled; Ozkar, S.; Finke, R. G. Coord. Chem. Rev. 2003 (submitted for publication)], our results imply that HPO42- merits consideration for nanocluster synthesis and stabilization any time M(O) nanoclusters of the above list of metals are planned. The additional advantages of HPO42- are also presented and briefly discussed, namely, its thermal robustness, its high resistance to reduction or oxidation, its valuable <SUP Finally, it is briefly discussed how the results provide molecular-level insight to guide the molecularly ill-understood area of phosphating of metal surfaces to achieve corrosion resistance, electrical resistance, or bonding to organic coatings such as rubber.
引用
收藏
页码:6247 / 6260
页数:14
相关论文
共 63 条
[1]   A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis [J].
Aiken, JD ;
Finke, RG .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 1999, 145 (1-2) :1-44
[2]   Polyoxoanion- and tetrabutylammonium-stabilized Rh(0)n nanoclusters:: Unprecedented nanocluster catalytic lifetime in solution [J].
Aiken, JD ;
Finke, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (38) :8803-8810
[3]   Polyoxoanion- and tetrabutylammonium-stabilized, near-monodisperse, 40±6 Å Rh(0)∼1500 to Rh(0)∼3700 nanoclusters:: Synthesis, characterization, and hydrogenation catalysis [J].
Aiken, JD ;
Finke, RG .
CHEMISTRY OF MATERIALS, 1999, 11 (04) :1035-1047
[4]   A perspective on nanocluster catalysis: Polyoxoanion and (n-C4H9N+ stabilized Ir(O) (similar to 300) nanocluster 'soluble heterogeneous catalysts' [J].
Aiken, JD ;
Lin, Y ;
Finke, RG .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 1996, 114 (1-3) :29-51
[5]   Nanocluster formation synthetic, kinetic, and mechanistic studies.: The detection of, and then methods to avoid, hydrogen mass-transfer limitations in the synthesis of polyoxoanion- and tetrabutylammonium-stabilized, near-monodisperse 40±6 Å Rh(0) nanoclusters [J].
Aiken, JD ;
Finke, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (37) :9545-9554
[6]   RESEARCH OPPORTUNITIES ON CLUSTERS AND CLUSTER-ASSEMBLED MATERIALS - A DEPARTMENT OF ENERGY, COUNCIL ON MATERIALS SCIENCE PANEL REPORT [J].
ANDRES, RP ;
AVERBACK, RS ;
BROWN, WL ;
BRUS, LE ;
GODDARD, WA ;
KALDOR, A ;
LOUIE, SG ;
MOSCOVITS, M ;
PEERCY, PS ;
RILEY, SJ ;
SIEGEL, RW ;
SPAEPEN, F ;
WANG, Y .
JOURNAL OF MATERIALS RESEARCH, 1989, 4 (03) :704-736
[7]  
[Anonymous], 1994, CLUSTERS COLLOIDS TH, P459, DOI DOI 10.1002/9783527616077.CH6
[8]   Enantioselective hydrogenations on platinum colloids [J].
Bonnemann, H ;
Braun, GA .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1996, 35 (17) :1992-1995
[9]   BASICITY, IR-SPECTRA AND PROTONATION OF SOME PROTON SPONGES IN ACETONITRILE [J].
BRZEZINSKI, B ;
SCHROEDER, G ;
GRECH, E ;
MALARSKI, Z ;
SOBCZYK, L .
JOURNAL OF MOLECULAR STRUCTURE, 1992, 274 :75-82
[10]   NB2W4O194- AND P3O93- COMPLEXES OF (CYCLOOCTADIENE)IRIDIUM(I) - SYNTHESIS, STRUCTURE, AND STABILITY OF TETRA-N-BUTYLAMMONIUM SALTS OF ([(C8H12)IR]5(NB2W4O19)2)3-, ([(C8H12)IR]2H(NB2W4O19)2)5-, AND [(C8H12)IR(P3O9)]2- [J].
DAY, VW ;
KLEMPERER, WG ;
MAIN, DJ .
INORGANIC CHEMISTRY, 1990, 29 (12) :2345-2355