Perfect transfer of arbitrary states in quantum spin networks

被引:424
作者
Christandl, M
Datta, N
Dorlas, TC
Ekert, A
Kay, A
Landahl, AJ
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Ctr Quantum Computat, Cambridge CB3 0WA, England
[2] Univ Cambridge, Ctr Math Sci, Stat Lab, Cambridge CB3 0WB, England
[3] Dublin Inst Adv Studies, Sch Theoret Phys, Dublin 4, Ireland
[4] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[5] MIT, Ctr Bits & Atoms, Cambridge, MA 02139 USA
[6] HP Labs, Palo Alto, CA 94304 USA
关键词
D O I
10.1103/PhysRevA.71.032312
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a class of qubit networks that admit perfect state transfer of any two-dimensional quantum state in a fixed period of time. We further show that such networks can distribute arbitrary entangled states between two distant parties, and can, by using such systems in parallel, transmit the higher-dimensional systems states across the network. Unlike many other schemes for quantum computation and communication, these networks do not require qubit couplings to be switched on and off. When restricted to N-qubit spin networks of identical qubit couplings, we show that 2 log(3)N is the maximal perfect communication distance for hypercube geometries. Moreover, if one allows fixed but different couplings between the qubits then perfect state transfer can be achieved over arbitrarily long distances in a linear chain. This paper expands and extends the work done by Christandl , Phys. Rev. Lett. 92, 187902 (2004).
引用
收藏
页数:11
相关论文
共 16 条
[1]   Mirror inversion of quantum states in linear registers [J].
Albanese, C ;
Christandl, M ;
Datta, N ;
Ekert, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (23) :230502-1
[2]  
[Anonymous], LNCS
[3]  
[Anonymous], 1999, MARKOV CHAINS
[4]  
Beineke LW., 1978, SELECTED TOPICS GRAP
[5]   Quantum communication through an unmodulated spin chain [J].
Bose, S .
PHYSICAL REVIEW LETTERS, 2003, 91 (20)
[6]   An Example of the Difference Between Quantum and Classical Random Walks [J].
Childs, Andrew M. ;
Farhi, Edward ;
Gutmann, Sam .
QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) :35-43
[7]   Perfect state transfer in quantum spin networks [J].
Christandl, M ;
Datta, N ;
Ekert, A ;
Landahl, AJ .
PHYSICAL REVIEW LETTERS, 2004, 92 (18) :187902-1
[8]   Quantum computation and decision trees [J].
Farhi, E ;
Gutmann, S .
PHYSICAL REVIEW A, 1998, 58 (02) :915-928
[9]  
Feynman R. P., 1965, Quantum Mechanics, VIII
[10]   Electron wavepacket propagation in a chain of coupled quantum dots [J].
Nikolopoulos, GM ;
Petrosyan, D ;
Lambropoulos, P .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (28) :4991-5002