Application of independent component analysis to microarrays

被引:169
作者
Lee, SI
Batzoglou, S [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
D O I
10.1186/gb-2003-4-11-r76
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We apply linear and nonlinear independent component analysis (ICA) to project microarray data into statistically independent components that correspond to putative biological processes, and to cluster genes according to over-or under-expression in each component. We test the statistical significance of enrichment of gene annotations within clusters. ICA outperforms other leading methods, such as principal component analysis, k-means clustering and the Plaid model, in constructing functionally coherent clusters on microarray datasets from Saccharomyces cerevisiae, Caenorhabditis elegans and human.
引用
收藏
页数:21
相关论文
共 67 条
[1]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[2]   Natural gradient works efficiently in learning [J].
Amari, S .
NEURAL COMPUTATION, 1998, 10 (02) :251-276
[3]   Improving support vector machine classifiers by modifying kernel functions [J].
Amari, S ;
Wu, S .
NEURAL NETWORKS, 1999, 12 (06) :783-789
[4]   Fuzzy neural network applied to gene expression profiling for predicting the prognosis of diffuse large B-cell lymphoma [J].
Ando, T ;
Suguro, M ;
Hanai, T ;
Kobayashi, T ;
Honda, H ;
Seto, M .
JAPANESE JOURNAL OF CANCER RESEARCH, 2002, 93 (11) :1207-1212
[5]  
[Anonymous], BLIND SOURCE SEPARAT
[6]  
Ashburner M, 2001, GENOME RES, V11, P1425
[7]   Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli [J].
Atkinson, MR ;
Savageau, MA ;
Myers, JT ;
Ninfa, AJ .
CELL, 2003, 113 (05) :597-607
[8]   A first application of independent component analysis to extracting structure from stock returns [J].
Back, AD ;
Weigend, AS .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 1997, 8 (04) :473-484
[9]  
Beckwith J. R., 1970, LACTOSE OPERON
[10]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159