The ErbB signaling module consists of four receptor tyrosine kinases and several dozen ligands that activate specific homo-and heterodimeric complexes of ErbB proteins. Combinatorial ligand/receptor/effector interactions allow large potential for signal diversification. Here we addressed the possibility that turn-off mechanisms enhance the diversification potential. Concentrating on ErbB-1 and two of its ligands, epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha), and the Neu differentiation factor (NDF/neuregulin) and one of its receptors, ErbB-3, we show that ligand binding variably accelerates endocytosis of the respective ligand-receptor complex. However, unlike the EGF-activated ErbB-1, which is destined primarily to degradation in lysosomes, NDF and TGF-alpha direct their receptors to recycling, probably because these ligands dissociate from their receptors earlier along the endocytic pathway. In the case of NDF, structural, as well as biochemical, analyses imply that ligand degradation occurs at a relatively late endosomal stage. Attenuation of receptor down-regulation by this mechanism apparently confers to both NDF and TGF-alpha more potent and prolonged signaling activity. In conclusion, alternative endocytic trafficking of ligand-ErbB complexes may tune and diversify signal transduction by EGF family ligands.