Near-source ground motions from simulations of sustained intersonic and supersonic fault ruptures

被引:80
作者
Aagaard, BT
Heaton, TH
机构
[1] US Geol Survey, Menlo Pk, CA 94025 USA
[2] CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA
关键词
D O I
10.1785/0120030249
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We examine the long-period near-source ground motions from simulations of M 7.4 events on a strike-slip fault using kinematic ruptures with rupture speeds that range from subshear speeds through intersonic speeds to supersonic speeds. The strong along-strike shear-wave directivity present in scenarios with subshear rupture speeds disappears in the scenarios with ruptures propagating faster than the shear-wave speed. Furthermore, the maximum horizontal displacements and velocities rotate from generally fault-perpendicular orientations at subshear rupture speeds to generally fault-parallel orientations at supersonic rupture speeds. For rupture speeds just above the shear-wave speed, the orientations are spatially heterogeneous as a result of the random nature of our assumed slip model. At locations within a few kilometers of the rupture, the time histories of the polarization of the horizontal motion provide a better diagnostic with which to gauge the rupture speed than the orientation of the peak motion. Subshear ruptures are associated with significant fault-perpendicular motion before fault-parallel motion close to the fault; supershear ruptures are associated with fault-perpendicular motion a er significant fault-parallel motion. Consistent with previous studies, we do not find evidence for prolonged supershear rupture in the long-period (>2 sec) ground motions from the 1979 Imperial Valley earthquake. However, we are unable to resolve the issue of whether a limited portion of the rupture (approximately 10 km in length) propagated faster than the shear-wave speed. Additionally, a recording, from the 2002 Denali fault earthquake does appear to be qualitatively consistent with locally supershear rupture. Stronger evidence for supershear rupture in earthquakes may require very dense station coverage in order to capture these potentially distinguishing traits.
引用
收藏
页码:2064 / 2078
页数:15
相关论文
共 34 条
[1]   Effects of fault dip and slip rake angles on near-source ground motions: Why rupture directivity was minimal in the 1999 Chi-Chi, Taiwan, earthquake [J].
Aagaard, BT ;
Hall, JF ;
Heaton, TH .
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2004, 94 (01) :155-170
[2]   Dynamic earthquake ruptures in the presence of lithostatic normal stresses: Implications for friction models and heat production [J].
Aagaard, BT ;
Heaton, TH ;
Hall, JF .
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2001, 91 (06) :1765-1796
[3]  
ANDERSON JG, 2000, KOCAELI TURKEY EA SA, V16, P113
[4]   RUPTURE VELOCITY OF PLANE STRAIN SHEAR CRACKS [J].
ANDREWS, DJ .
JOURNAL OF GEOPHYSICAL RESEARCH, 1976, 81 (32) :5679-5687
[5]   A FAULTING MODEL FOR THE 1979 IMPERIAL-VALLEY EARTHQUAKE [J].
ARCHULETA, RJ .
JOURNAL OF GEOPHYSICAL RESEARCH, 1984, 89 (NB6) :4559-4585
[6]  
Boore DM, 2001, B SEISMOL SOC AM, V91, P1199, DOI 10.1785/0120000703
[7]   Seismic imaging of the 1999 Izmit (Turkey) rupture inferred from the near-fault recordings [J].
Bouchon, M ;
Toksöz, N ;
Karabulut, H ;
Bouin, MP ;
Dietrich, M ;
Aktar, M ;
Edie, M .
GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (18) :3013-3016
[8]   Observation of long supershear rupture during the magnitude 8.1 Kunlunshan earthquake [J].
Bouchon, M ;
Vallée, M .
SCIENCE, 2003, 301 (5634) :824-826
[9]   How fast is rupture during an earthquake?: New insights from the 1999 Turkey earthquakes [J].
Bouchon, M ;
Bouin, MP ;
Karabulut, H ;
Toksöz, MN ;
Dietrich, M ;
Rosakis, AJ .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (14) :2723-2726
[10]  
Broberg K.B., 1995, Archives of Mechanics, V47, P859