Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions

被引:633
作者
Berger, Susanne [1 ]
Sinha, Alok K. [2 ]
Roitsch, Thomas [1 ]
机构
[1] Univ Wurzburg, Julius Von Sachs Inst Biowissensch, D-97082 Wurzburg, Germany
[2] Natl Inst Plant Genome Res, New Delhi 110067, India
关键词
carbohydrate metabolism; pathogen infection; photosynthesis;
D O I
10.1093/jxb/erm298
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Phytopathogen infection leads to changes in secondary metabolism based on the induction of defence programmes as well as to changes in primary metabolism which affect growth and development of the plant. Therefore, pathogen attack causes crop yield losses even in interactions which do not end up with disease of, death of the plant. While the regulation of defence responses has been intensively studied for decades, less is known about the effects of pathogen infection on primary metabolism. Recently, interest in this research area has been growing, and aspects of photosynthesis, assimilate partitioning, and source-sink regulation in different types of plant-pathogen interactions have been investigated. Similarly, phytopathological studies take into consideration the physiological status of the infected tissues to elucidate the fine-tuned infection mechanisms. The aim of this review is to give a summary of recent advances in the mutual interrelation between primary metabolism and pathogen infection, as well as to indicate current developments in non-invasive techniques and important strategies of combining modern molecular and physiological techniques with phytopathology for future investigations.
引用
收藏
页码:4019 / 4026
页数:8
相关论文
共 57 条
[1]   DIAGNOSIS OF THE EARLIEST STRAIN-SPECIFIC INTERACTIONS BETWEEN TOBACCO MOSAIC-VIRUS AND CHLOROPLASTS OF TOBACCO-LEAVES IN-VIVO BY MEANS OF CHLOROPHYLL FLUORESCENCE IMAGING [J].
BALACHANDRAN, S ;
OSMOND, CB ;
DALEY, PF .
PLANT PHYSIOLOGY, 1994, 104 (03) :1059-1065
[2]   ACCUMULATION OF BETA-FRUCTOSIDASE IN THE CELL-WALLS OF TOMATO ROOTS FOLLOWING INFECTION BY A FUNGAL WILT PATHOGEN [J].
BENHAMOU, N ;
GRENIER, J ;
CHRISPEELS, MJ .
PLANT PHYSIOLOGY, 1991, 97 (02) :739-750
[3]   Biophoton imaging:: A nondestructive method for assaying R gene responses [J].
Bennett, M ;
Mehta, M ;
Grant, M .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2005, 18 (02) :95-102
[4]   Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato [J].
Berger, S ;
Papadopoulos, M ;
Schreiber, U ;
Kaiser, W ;
Roitsch, T .
PHYSIOLOGIA PLANTARUM, 2004, 122 (04) :419-428
[5]   Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis:: differential effects of virulent and avirulent strains of P-syringae and of oxylipins on A-thaliana [J].
Berger, Susanne ;
Benediktyova, Zuzana ;
Matous, Karel ;
Bonfig, Katharina ;
Mueller, Martin J. ;
Nedbal, Ladislav ;
Roitsch, Thomas .
JOURNAL OF EXPERIMENTAL BOTANY, 2007, 58 (04) :797-806
[6]   Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules [J].
Blee, KA ;
Anderson, AJ .
PLANT MOLECULAR BIOLOGY, 2002, 50 (02) :197-211
[7]   Infection with virulent and avirulent P-syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves [J].
Bonfig, Katharina B. ;
Schreiber, Ulrich ;
Gabler, Andrea ;
Roitsch, Thomas ;
Berger, Susanne .
PLANTA, 2006, 225 (01) :1-12
[8]   Spatial analysis of plant metabolism:: Sucrose imaging within Vicia faba cotyledons reveals specific developmental patterns [J].
Borisjuk, L ;
Walenta, S ;
Rolletschek, H ;
Mueller-Klieser, W ;
Wobus, U ;
Weber, H .
PLANT JOURNAL, 2002, 29 (04) :521-530
[9]   Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism [J].
Chou, Hsueh-Mei ;
Bundock, Nicholas ;
Rolfe, Stephen A. ;
Scholes, Julie D. .
MOLECULAR PLANT PATHOLOGY, 2000, 1 (02) :99-113
[10]  
CLAERLE L, 2007, J PLANT PHYSL, V164, P253