Mutants of Arabidopsis defective in a sequence-specific mRNA degradation pathway

被引:42
作者
Johnson, MA
Pérez-Amador, MA
Lidder, P
Green, PJ
机构
[1] Michigan State Univ, Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA
[2] Michigan State Univ, Program Mol & Cellular Biol, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Biochem, E Lansing, MI 48824 USA
关键词
D O I
10.1073/pnas.240354097
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
One of the ways a cell can rapidly and tightly regulate gene expression is to target specific mRNAs for rapid decay. A number of mRNA instability sequences that mediate rapid mRNA decay have been identified, particularly from multicellular eukaryotes, but pinpointing the cellular components that play critical roles in sequence-specific decay in vivo has been more difficult. In contrast, general pathways of mRNA degradation in yeast have been well established through the analysis of mutants affecting the general mRNA decay machinery. Strategies to isolate mutants in sequence-specific mRNA decay pathways, although extremely limited so far, have the potential to be just as powerful. In the study reported here, a selection in transgenic plants allowed the isolation of rare mutants of Arabidopsis thaliana that elevate the abundance of mRNAs that contain the plant mRNA instability sequence called DST (downstream element). This instability sequence is highly conserved in unstable small auxin up RNA (SAUR) transcripts. Genetic analysis of two dst mutants isolated via this selection showed that they are incompletely dominant and represent two independent loci. in addition to affecting DST-containing transgene mRNAs, mutations at both loci increased the abundance of the endogenous DST-containing SAUR-AC1 mRNA, but not controls lacking DST sequences. That these phenotypes are caused by deficiencies in DST-mediated mRNA decay was supported by mRNA stability measurements in transgenic plants. Isolation of the dst mutants provides a means to study sequence-specific mRNA degradation in vivo and establishes a method to isolate similar mutants from other organisms.
引用
收藏
页码:13991 / 13996
页数:6
相关论文
共 43 条
[1]   Regulation of S-like ribonuclease levels in arabidopsis.: Antisense inhibition of RNS1 or RNS2 elevates anthocyanin accumulation [J].
Bariola, PA ;
MacIntosh, GC ;
Green, PJ .
PLANT PHYSIOLOGY, 1999, 119 (01) :331-342
[2]  
Belasco J.G., 1993, Control of Messenger RNA Stability, P475
[3]  
BELL CJ, 1990, MOL GEN GENET, V220, P289, DOI 10.1007/BF00260496
[4]   ASSIGNMENT OF 30 MICROSATELLITE LOCI TO THE LINKAGE MAP OF ARABIDOPSIS [J].
BELL, CJ ;
ECKER, JR .
GENOMICS, 1994, 19 (01) :137-144
[5]  
BOERJAN W, 1995, PLANT CELL, V7, P1405, DOI 10.1105/tpc.7.9.1405
[6]   Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae [J].
Caponigro, G ;
Parker, R .
MICROBIOLOGICAL REVIEWS, 1996, 60 (01) :233-+
[7]   Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability [J].
Carballo, E ;
Lai, WS ;
Blackshear, PJ .
BLOOD, 2000, 95 (06) :1891-1899
[8]   Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin [J].
Carballo, E ;
Lai, WS ;
Blackshear, PJ .
SCIENCE, 1998, 281 (5379) :1001-1005
[9]   AU-RICH ELEMENTS - CHARACTERIZATION AND IMPORTANCE IN MESSENGER-RNA DEGRADATION [J].
CHEN, CYA ;
SHYU, AB .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (11) :465-470
[10]   RNA surveillance - unforeseen consequences for gene expression, inherited genetic disorders and cancer [J].
Culbertson, MR .
TRENDS IN GENETICS, 1999, 15 (02) :74-80