The nucleus basalis and memory codes: Auditory cortical plasticity and the induction of specific, associative behavioral memory

被引:126
作者
Weinberger, NM [1 ]
机构
[1] Univ Calif Irvine, Ctr Neurobiol Learning & Memory, Irvine, CA 92797 USA
[2] Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92797 USA
关键词
conditioning; S-S learning; stimulus generalization; acetylcholine; receptive fields; tuning; representation; cortical map;
D O I
10.1016/S1074-7427(03)00072-8
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Receptive field (RF) plasticity develops in the primary auditory cortex (ACx) when a tone conditioned stimulus (CS) becomes associated with an appetitive or aversive unconditioned stimulus (US). This prototypical stimulus-stimulus (S-S) association is accompanied by shifts of frequency tuning of neurons toward or to the frequency of the CS such that the area of best tuning of the CS frequency is increased in the tonotopic representation of the ACx. RF plasticity has all of the major characteristics of behavioral associative memory: it is highly specific, discriminative, rapidly induced, consolidates (becomes stronger and more specific over hours to days) and can be retained indefinitely (tested to two months). Substitution of nucleus basalis (NB) stimulation for a US induces the same associative RF plasticity, and this requires the engagement of muscarinic receptors in the ACx. Pairing a tone with NB stimulation actually induces specific, associative behavioral memory, as indexed by post-training frequency generalization gradients. The degree of acquired behavioral significance of sounds appears to be encoded by the number of neurons that become returned in the ACx to that acoustic stimulus, the greater the importance, the greater the number of re-tuned cells. This memory code has recently been supported by direct neurobehavioral tests. In toto, these findings support the view that specific, learned auditory memory content is stored in the ACx, and further that this storage of information during learning and the instantiation of the memory code involves the engagement of the nucleus basalis and its release of acetylcholine into target structures, particularly the cerebral cortex. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:268 / 284
页数:17
相关论文
共 123 条
[1]  
[Anonymous], 1967, INTEGRATIVE ACTIVITY
[2]   CHOLINERGIC MODULATION OF FREQUENCY RECEPTIVE-FIELDS IN AUDITORY-CORTEX .2. FREQUENCY-SPECIFIC EFFECTS OF ANTICHOLINESTERASES PROVIDE EVIDENCE FOR A MODULATORY ACTION OF ENDOGENOUS ACH [J].
ASHE, JH ;
MCKENNA, TM ;
WEINBERGER, NM .
SYNAPSE, 1989, 4 (01) :44-54
[3]   192 IgG-saporin lesions to the nucleus basalis magnocellularis (nBM) disrupt acquisition of learning set formation [J].
Bailey, AM ;
Rudisill, ML ;
Hoof, EJ ;
Loving, ML .
BRAIN RESEARCH, 2003, 969 (1-2) :147-159
[4]  
Bain Alexander, 1855, SENSES INTELLECT
[5]   CLASSICAL-CONDITIONING INDUCES CS-SPECIFIC RECEPTIVE-FIELD PLASTICITY IN THE AUDITORY-CORTEX OF THE GUINEA-PIG [J].
BAKIN, JS ;
WEINBERGER, NM .
BRAIN RESEARCH, 1990, 536 (1-2) :271-286
[6]   Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning [J].
Bakin, JS ;
South, DA ;
Weinberger, NM .
BEHAVIORAL NEUROSCIENCE, 1996, 110 (05) :905-913
[7]   SENSITIZATION INDUCED RECEPTIVE-FIELD PLASTICITY IN THE AUDITORY-CORTEX IS INDEPENDENT OF CS-MODALITY [J].
BAKIN, JS ;
LEPAN, B ;
WEINBERGER, NM .
BRAIN RESEARCH, 1992, 577 (02) :226-235
[8]   Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis [J].
Bakin, JS ;
Weinberger, NM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (20) :11219-11224
[9]   Cortical remodelling induced by activity of ventral tegmental dopamine neurons [J].
Bao, SW ;
Chan, WT ;
Merzenich, MM .
NATURE, 2001, 412 (6842) :79-83
[10]   Intact spatial learning following lesions of basal forebrain cholinergic neurons [J].
Baxter, MG ;
Bucci, DJ ;
Sobel, TJ ;
Williams, MJ ;
Gorman, LK ;
Gallagher, M .
NEUROREPORT, 1996, 7 (08) :1417-1420