Lipid sulfates and sulfonates are allosteric competitive inhibitors of the N-terminal phosphatase activity of the mammalian soluble epoxide hydrolase

被引:54
作者
Tran, KL
Aronov, PA
Tanaka, H
Newman, JW
Hammock, BD
Morisseau, C [1 ]
机构
[1] Univ Calif Davis, Dept Entomol, Davis, CA 95616 USA
[2] Univ Calif Davis, Ctr Canc, Davis, CA 95616 USA
关键词
D O I
10.1021/bi050842g
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The EPXH2 gene encodes for the soluble epoxide hydrolase (sEH), a homodimeric enzyme with each monomer containing two domains with distinct activities. The C-terminal domain, containing the epoxide hydrolase activity (Cterm-EH), is involved in the metabolism of arachidonic acid epoxides, endogenous chemical mediators that play important roles in blood pressure regulation, cell growth, and inflammation. We recently demonstrated that the N-terminal domain contains a Mg2+-dependent lipid phosphate phosphatase activity (Nterm-phos). However, the biological role of this activity is unknown. The inability of known phosphatase inhibitors to inhibit the Nterm-phos constitutes a significant barrier to the elucidation of its function. We describe herein sulfate, sulfonate, and phosphonate lipids as novel potent inhibitors of Nterm-phos. These compounds are allosteric competitive inhibitors with K-I in the hundred nanomolar range. These inhibitors may provide a valuable tool to investigate the biological role of the Nterm-phos. We found that polyisoprenyl phosphates are substrates of Nterm-phos, suggesting a possible role in sterol synthesis or inflammation. Furthermore, some of these compounds inhibit the C-terminal sEH activity through a noncompetitive inhibition mechanism involving a new binding site on the C-terminal domain. This novel site may play a role in the natural in vivo regulation of epoxide hydrolysis by sEH.
引用
收藏
页码:12179 / 12187
页数:9
相关论文
共 42 条
[1]  
[Anonymous], 1985, Enzyme Structure and Mechanism
[2]   Detoxification of environmental mutagens and carcinogens: Structure, mechanism, and evolution of liver epoxide hydrolase [J].
Argiriadi, MA ;
Morisseau, C ;
Hammock, BD ;
Christianson, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (19) :10637-10642
[3]   GENE EVOLUTION OF EPOXIDE HYDROLASES AND RECOMMENDED NOMENCLATURE [J].
BEETHAM, JK ;
GRANT, D ;
ARAND, M ;
GARBARINO, J ;
KIYOSUE, T ;
PINOT, F ;
OESCH, F ;
BELKNAP, WR ;
SHINOZAKI, K ;
HAMMOCK, BD .
DNA AND CELL BIOLOGY, 1995, 14 (01) :61-71
[4]   CDNA CLONING AND EXPRESSION OF A SOLUBLE EPOXIDE HYDROLASE FROM HUMAN LIVER [J].
BEETHAM, JK ;
TIAN, TG ;
HAMMOCK, BD .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1993, 305 (01) :197-201
[5]   IMPROVED RADIOLABELED SUBSTRATES FOR SOLUBLE EPOXIDE HYDROLASE [J].
BORHAN, B ;
MEBRAHTU, T ;
NAZARIAN, S ;
KURTH, MJ ;
HAMMOCK, BD .
ANALYTICAL BIOCHEMISTRY, 1995, 231 (01) :188-200
[6]   The CYPP450 arachidonic acid monooxygenases: From cell signaling to blood pressure regulation [J].
Capdevila, JH ;
Falck, JR .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 285 (03) :571-576
[7]   THE REACTION OF ARACHIDONIC-ACID EPOXIDES (EPOXYEICOSATRIENOIC ACIDS) WITH A CYTOSOLIC EPOXIDE HYDROLASE [J].
CHACOS, N ;
CAPDEVILA, J ;
FALCK, JR ;
MANNA, S ;
MARTINWIXTROM, C ;
GILL, SS ;
HAMMOCK, BD ;
ESTABROOK, RW .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1983, 223 (02) :639-648
[8]   Heparin-binding EGF-like growth factor mediates the biological effects of P450 arachidonate epoxygenase metabolites in epithelial cells [J].
Chen, JK ;
Capdevila, J ;
Harris, RC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :6029-6034
[9]   Inhibition of isoprene biosynthesis pathway enzymes by phosphonates, bisphosphonates, and diphosphates [J].
Cheng, F ;
Oldfield, E .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (21) :5149-5158
[10]   The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase [J].
Cronin, A ;
Mowbray, S ;
Dürk, H ;
Homburg, S ;
Fleming, I ;
Fisslthaler, B ;
Oesch, F ;
Arand, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (04) :1552-1557