Semiparametric regression for clustered data

被引:56
作者
Lin, XH [1 ]
Carroll, RJ
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
clustered data; generalised estimation equation; kernel method; longitudinal data; nonparametric regression; partially linear model; profile method; sandwich estimator; semiparametric efficiency bound; semiparametric efficient score;
D O I
10.1093/biomet/88.4.1179
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider estimation in a semiparametric partially generalised linear model for clustered data using estimating equations. A marginal model is assumed where the mean of the outcome variable depends on some covariates parametrically and a cluster-level covariate nonparametrically. A profile-kernel method allowing for working correlation matrices is developed. We show that the nonparametric part of the model can be estimated using standard nonparametric methods, including smoothing-parameter estimation, and the parametric part of the model can be estimated in a profile fashion. The asymptotic distributions of the parameter estimators are derived, and the optimal estimators of both the nonparametric and parametric parts are shown to be obtained when the working correlation matrix equals the actual correlation matrix. The asymptotic covariance matrix of the parameter estimator is consistently estimated by the sandwich estimator. We show that the semiparametric efficient score takes on a simple form and our profile-kernel method is semiparametric efficient. The results for the case where the nonparametric part of the model is an observation-level covariate are noted to be dramatically different.
引用
收藏
页码:1179 / 1185
页数:7
相关论文
共 8 条
[1]  
Diggle P. J., 2002, ANAL LONGITUDINAL DA
[2]  
Hastie T., 1990, Generalized additive model
[3]   LONGITUDINAL DATA-ANALYSIS USING GENERALIZED LINEAR-MODELS [J].
LIANG, KY ;
ZEGER, SL .
BIOMETRIKA, 1986, 73 (01) :13-22
[4]  
LIN X, 2001, IN PRESS J AM STAT A
[6]   QUASI-LIKELIHOOD ESTIMATION IN SEMIPARAMETRIC MODELS [J].
SEVERINI, TA ;
STANISWALIS, JG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (426) :501-511
[7]   PROFILE LIKELIHOOD AND CONDITIONALLY PARAMETRIC MODELS [J].
SEVERINI, TA ;
WONG, WH .
ANNALS OF STATISTICS, 1992, 20 (04) :1768-1802
[8]  
SPECKMAN P, 1988, J ROY STAT SOC B MET, V50, P413