LHC II protein phosphorylation in leaves of Arabidopsis thaliana mutants deficient in non-photochemical quenching

被引:9
作者
Breitholtz, HL [1 ]
Srivastava, R [1 ]
Tyystjärvi, E [1 ]
Rintamäki, E [1 ]
机构
[1] Univ Turku, Dept Biol, Turku 20014, Finland
关键词
LHC II kinase; npq1-2 and npq4-1 mutants; redox regulation; ROSs; thioredoxin;
D O I
10.1007/s11120-005-0998-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Phosphorylation of the light-harvesting chlorophyll a/b complex II (LHC II) proteins is induced in light via activation of the LHC II kinase by reduction of cytochrome b(6)f complex in thylakoid membranes. We have recently shown that, besides this activation, the LHC II kinase can be regulated in vitro by a thioredoxin-like component, and H2O2 that inserts an inhibitory loop in the regulation of LHC II protein phosphorylation in the chloroplast. In order to disclose the complex network for LHC II protein phosphorylation in vivo, we studied phosphorylation of LHC II proteins in the leaves of npq1-2 and npq4-1 mutants of Arabidopis thaliana. In comparison to wild-type, these mutants showed reduced non-photochemical quenching and increased excitation pressure of Photosystem II (PS II) under physiological light intensities. Peculiar regulation of LHC II protein phosphorylation was observed in mutant leaves under illumination. The npq4-1 mutant was able to maintain a high amount of phosphorylated LHC II proteins in thylakoid membranes at light intensities that induced inhibition of phosphorylation in wild-type leaves. Light intensity-dependent changes in the level of LHC II protein phosphorylation were smaller in the npq1-2 mutant compared to the wild-type. No significant differences in leaf thickness, dry weight, chlorophyll content, or the amount of LHC II proteins were observed between the two mutant and wild-type lines. We propose that the reduced capacity of the mutant lines to dissipate excess excitation energy induces changes in the production of reactive oxygen species in chloroplasts, which consequently affects the regulation of LHC II protein phosphorylation.
引用
收藏
页码:217 / 223
页数:7
相关论文
共 27 条
[1]   PROTEIN-PHOSPHORYLATION IN REGULATION OF PHOTOSYNTHESIS [J].
ALLEN, JF .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1098 (03) :275-335
[2]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[3]   Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis. Evidence from transgenic Arabidopsis [J].
Baier, M ;
Dietz, KJ .
PLANT PHYSIOLOGY, 1999, 119 (04) :1407-1414
[4]   Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls [J].
Bassi, R ;
Caffarri, S .
PHOTOSYNTHESIS RESEARCH, 2000, 64 (2-3) :243-256
[5]   PROTEIN-PHOSPHORYLATION IN GREEN PLANT CHLOROPLASTS [J].
BENNETT, J .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1991, 42 :281-311
[6]   Thylakoid protein phosphorylation and the thiol redox state [J].
Carlberg, I ;
Rintamäki, E ;
Aro, EM ;
Andersson, B .
BIOCHEMISTRY, 1999, 38 (10) :3197-3204
[7]   The role of xanthophyll cycle carotenoids in the protection of photosynthesis [J].
DemmigAdams, B ;
Adams, WW .
TRENDS IN PLANT SCIENCE, 1996, 1 (01) :21-26
[8]   Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas [J].
Depège, N ;
Bellafiore, S ;
Rochaix, JD .
SCIENCE, 2003, 299 (5612) :1572-1575
[9]   Evidence for light-dependent and light-independent protein dephosphorylation in chloroplasts [J].
Elich, TD ;
Edelman, M ;
Mattoo, AK .
FEBS LETTERS, 1997, 411 (2-3) :236-238
[10]  
GAL A, 1997, PHYSIOL PLANTARUM, V100, P241