agr-mediated dispersal of Staphylococcus aureus biofilms

被引:693
作者
Boles, Blaise R. [1 ]
Horswill, Alexander R. [1 ]
机构
[1] Univ Iowa, Roy J & Lucille A Carver Coll Med, Dept Microbiol, Iowa City, IA 52242 USA
关键词
D O I
10.1371/journal.ppat.1000052
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The agr quorum-sensing system of Staphylococcus aureus modulates the expression of virulence factors in response to autoinducing peptides (AIPs). Recent studies have suggested a role for the agr system in S. aureus biofilm development, as agr mutants exhibit a high propensity to form biofilms, and cells dispersing from a biofilm have been observed displaying an active agr system. Here, we report that repression of agr is necessary to form a biofilm and that reactivation of agr in established biofilms through AIP addition or glucose depletion triggers detachment. Inhibitory AIP molecules did not induce detachment and an agr mutant was non-responsive, indicating a dependence on a functional, active agr system for dispersal. Biofilm detachment occurred in multiple S. aureus strains possessing divergent agr systems, suggesting it is a general S. aureus phenomenon. Importantly, detachment also restored sensitivity of the dispersed cells to the antibiotic rifampicin. Proteinase K inhibited biofilm formation and dispersed established biofilms, suggesting agr-mediated detachment occurred in an ica-independent manner. Consistent with a protease-mediated mechanism, increased levels of serine proteases were detected in detaching biofilm effluents, and the serine protease inhibitor PMSF reduced the degree of agr-mediated detachment. Through genetic analysis, a double mutant in the agr-regulated Aur metalloprotease and the SpIABCDEF serine proteases displayed minimal extracellular protease activity, improved biofilm formation, and a strongly attenuated detachment phenotype. These findings indicate that induction of the agr system in established S. aureus biofilms detaches cells and demonstrate that the dispersal mechanism requires extracellular protease activity.
引用
收藏
页数:13
相关论文
共 91 条
[1]   Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms [J].
Allison, DG ;
Ruiz, B ;
SanJose, C ;
Jaspe, A ;
Gilbert, P .
FEMS MICROBIOLOGY LETTERS, 1998, 167 (02) :179-184
[2]   EFFECTS OF CARBON AND OXYGEN LIMITATIONS AND CALCIUM CONCENTRATIONS ON BIOFILM REMOVAL PROCESSES [J].
APPLEGATE, DH ;
BRYERS, JD .
BIOTECHNOLOGY AND BIOENGINEERING, 1991, 37 (01) :17-25
[3]   A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping [J].
Atkinson, S ;
Throup, JP ;
Stewart, GSAB ;
Williams, P .
MOLECULAR MICROBIOLOGY, 1999, 33 (06) :1267-1277
[4]   Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm [J].
Banin, E ;
Brady, KM ;
Greenberg, EP .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (03) :2064-2069
[5]   Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa [J].
Barraud, Nicolas ;
Hassett, Daniel J. ;
Hwang, Sung-Hei ;
Rice, Scott A. ;
Kjelleberg, Staffan ;
Webb, Jeremy S. .
JOURNAL OF BACTERIOLOGY, 2006, 188 (21) :7344-7353
[6]   Global gene expression in Staphylococcus aureus biofilms [J].
Beenken, KE ;
Dunman, PM ;
McAleese, F ;
Macapagal, D ;
Murphy, E ;
Projan, SJ ;
Blevins, JS ;
Smeltzer, MS .
JOURNAL OF BACTERIOLOGY, 2004, 186 (14) :4665-4684
[7]   Mutation of sarA in Staphylococcus aureus limits biofilm formation [J].
Beenken, KE ;
Blevins, JS ;
Smeltzer, MS .
INFECTION AND IMMUNITY, 2003, 71 (07) :4206-4211
[8]   Activity of the major staphylococcal autolysin Atl [J].
Biswas, Raja ;
Voggu, Lalitha ;
Simon, Uwe Karsten ;
Hentschel, Petra ;
Thumm, Guenther ;
Goetz, Friedrich .
FEMS MICROBIOLOGY LETTERS, 2006, 259 (02) :260-268
[9]   Strain-dependent differences in the regulatory roles of sarA and agr in Staphylococcus aureus [J].
Blevins, JS ;
Beenken, KE ;
Elasri, MO ;
Hurlburt, BK ;
Smeltzer, MS .
INFECTION AND IMMUNITY, 2002, 70 (02) :470-480
[10]   Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms [J].
Boles, BR ;
Thoendel, M ;
Singh, PK .
MOLECULAR MICROBIOLOGY, 2005, 57 (05) :1210-1223