Stabilized Element Residual Method (SERM): A posteriori error estimation for the advection-diffusion equation

被引:8
作者
Agarwal, AN [1 ]
Pinsky, PM [1 ]
机构
[1] STANFORD UNIV,DIV APPL MECH,STANFORD,CA 94305
关键词
adaptive finite element method; a posteriori error estimation; advection-diffusion; Stabilized Element Residual Method;
D O I
10.1016/0377-0427(96)00014-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Residual-based a posteriori error estimation techniques have been developed for linear elliptic symmetric positive-definite problems. One asymptotically-exact error estimator for the elliptic Laplacian operator relies on solving local Neumann problems in each element. This technique is extended to the unsymmetric and positive semi-definite advection-diffusion (AD) operator. Here, a novel approach, the Stabilized Element Residual Method (SERM) is presented. In this method, the unsymmetric advection terms are retained in the formulation of the local error problem through the use of stabilized methods. The selection of the optimum stabilization parameter is discussed.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 16 条
[1]   A PROCEDURE FOR A POSTERIORI ERROR ESTIMATION FOR H-P FINITE-ELEMENT METHODS [J].
AINSWORTH, M ;
ODEN, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 101 (1-3) :73-96
[2]  
AINSWORTH M, 1995, POSTERIORI ERROR EST
[3]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[4]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[5]   ADAPTIVE FINITE-ELEMENTS FOR FLOW PROBLEMS WITH MOVING BOUNDARIES .1. VARIATIONAL-PRINCIPLES AND A POSTERIORI ESTIMATES [J].
DEMKOWICZ, L ;
ODEN, JT ;
STROUBOULIS, T .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 46 (02) :217-251
[6]  
ERIKSSON K, 1988, MATH COMPUT, V50, P361, DOI 10.1090/S0025-5718-1988-0929542-X
[7]  
ERIKSSON K, 1990, ADAPTIVE STREAMLINE
[8]   STABILIZED FINITE-ELEMENT METHODS .1. APPLICATION TO THE ADVECTIVE-DIFFUSIVE MODEL [J].
FRANCA, LP ;
FREY, SL ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 95 (02) :253-276
[9]   A NEW FINITE-ELEMENT FORMULATION FOR COMPUTATIONAL FLUID-DYNAMICS .8. THE GALERKIN LEAST-SQUARES METHOD FOR ADVECTIVE-DIFFUSIVE EQUATIONS [J].
HUGHES, TJR ;
FRANCA, LP ;
HULBERT, GM .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1989, 73 (02) :173-189
[10]   A NEW FINITE-ELEMENT FORMULATION FOR COMPUTATIONAL FLUID-DYNAMICS .2. BEYOND SUPG [J].
HUGHES, TJR ;
MALLET, M ;
MIZUKAMI, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 54 (03) :341-355