A numerical gamma-ray burst simulation using three-dimensional relativistic hydrodynamics: The transition from spherical to jetlike expansion

被引:47
作者
Cannizzo, JK
Gehrels, N
Vishniac, ET
机构
[1] NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Greenbelt, MD 20771 USA
[2] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21210 USA
[3] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA
关键词
gamma rays : bursts; hydrodynamics; methods : numerical; relativity; shock waves;
D O I
10.1086/380436
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the first unrestricted, three-dimensional relativistic hydrodynamical calculations of the blob of gas associated with the jet that produces a gamma-ray burst. We investigate the deceleration phase of the blob, which corresponds to the time when afterglow radiation is produced, concentrating on the transition in which the relativistic beaming gamma(-1) goes from being less than theta, where gamma is the bulk Lorentz factor and theta is the angular width of the jet, to gamma(-1) being greater than theta. We study the time-dependent evolution of the physical parameters associated with the jet, both parallel to the direction of motion and perpendicular to it. We calculate light curves for observers at varying angles with respect to the velocity vector of the blob, assuming optically thin emission that scales with the local pressure. Our main findings are that ( 1) gas ahead of the advancing blob does not accrete onto and merge with the blob material but rather flows around the blob, ( 2) the decay light curve steepens at a time corresponding roughly to gamma(-1) approximate to theta ( in accord with earlier studies), and ( 3) the rate of decrease of the forward component of momentum in the blob is well fitted by a simple model in which the gas in front of the blob exerts a drag force on the blob and the cross-sectional area of the blob increases quadratically with laboratory time ( or distance).
引用
收藏
页码:380 / 390
页数:11
相关论文
共 60 条
[1]   Relativistic jets from collapsars [J].
Aloy, MA ;
Müller, E ;
Ibáñez, JM ;
Martí, JM ;
MacFadyen, A .
ASTROPHYSICAL JOURNAL, 2000, 531 (02) :L119-L122
[2]   A standard kinetic energy reservoir in gamma-ray burst afterglows [J].
Berger, E ;
Kulkarni, SR ;
Frail, DA .
ASTROPHYSICAL JOURNAL, 2003, 590 (01) :379-385
[3]  
BLANDFORD RD, 1976, PHYS FLUIDS, V19, P1130, DOI 10.1063/1.861619
[4]   Wind interaction models for gamma-ray burst afterglows: The case for two types of progenitors [J].
Chevalier, RA ;
Li, ZY .
ASTROPHYSICAL JOURNAL, 2000, 536 (01) :195-212
[5]   Gamma-ray burst environments and progenitors [J].
Chevalier, RA ;
Li, ZY .
ASTROPHYSICAL JOURNAL, 1999, 520 (01) :L29-L32
[6]   Discovery of an X-ray afterglow associated with the gamma-ray burst of 28 February 1997 [J].
Costa, E ;
Frontera, F ;
Heise, J ;
Feroci, M ;
Zand, JI ;
Fiore, F ;
Cinti, MN ;
DalFiume, D ;
Nicastro, L ;
Orlandini, M ;
Palazzi, E ;
Rapisarda, M ;
Zavattini, G ;
Jager, R ;
Parmar, A ;
Owens, A ;
Molendi, S ;
Cusumano, G ;
Maccarone, MC ;
Giarrusso, S ;
Coletta, A ;
Antonelli, LA ;
Giommi, P ;
Muller, JM ;
Piro, L ;
Butler, RC .
NATURE, 1997, 387 (6635) :783-785
[7]   An efficient shock-capturing central-type scheme for multidimensional relativistic flows - II. Magnetohydrodynamics [J].
Del Zanna, L ;
Bucciantini, N ;
Londrillo, P .
ASTRONOMY & ASTROPHYSICS, 2003, 400 (02) :397-413
[8]   An efficient shock-capturing central-type scheme for multidimensional relativistic flows - I. Hydrodynamics [J].
Del Zanna, L ;
Bucciantini, N .
ASTRONOMY & ASTROPHYSICS, 2002, 390 (03) :1177-1186
[9]   Beaming in gamma-ray bursts: Evidence for a standard energy reservoir [J].
Frail, DA ;
Kulkarni, SR ;
Sari, R ;
Djorgovski, SG ;
Bloom, JS ;
Galama, TJ ;
Reichart, DE ;
Berger, E ;
Harrison, FA ;
Price, PA ;
Yost, SA ;
Diercks, A ;
Goodrich, RW ;
Chaffee, F .
ASTROPHYSICAL JOURNAL, 2001, 562 (01) :L55-L58
[10]   Constraining the structure of gamma-ray burst jets through the afterglow light curves [J].
Granot, J ;
Kumar, P .
ASTROPHYSICAL JOURNAL, 2003, 591 (02) :1086-1096