Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy

被引:212
作者
Huber, G [1 ]
Gorb, SN [1 ]
Spolenak, R [1 ]
Arzt, E [1 ]
机构
[1] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
关键词
atomic force microscopy; adhesion force; gecko adhesion;
D O I
10.1098/rsbl.2004.0254
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Animals that cling to walls and walk on ceilings owe this ability to micrometre and nanoscale attachment elements. The highest adhesion forces are encountered in geckoes, which have developed intricate hierarchical structures consisting of toes (millimetre dimensions), lamella (400-600 mu m size), setae (micrometre dimensions) and spatulae (similar to 200 nm size). Adhesion: forces of setae on different substrates have previously been measured by a micro-electromechanical system technique. Here we report the first successful experiments in which the force-displacement curves were determined for individual spatulae by atomic force microscopy. The adhesion force for these smallest elements of the gecko's attachment system is reproducibly found to be about 10 nN. This method sheds new light on the nanomechanisms of attachment and will help in the rational design of artificial attachment systems.
引用
收藏
页码:2 / 4
页数:3
相关论文
共 27 条
[1]   From micro to nano contacts in biological attachment devices [J].
Arzt, E ;
Gorb, S ;
Spolenak, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) :10603-10606
[2]   Towards a micromechanical understanding of biological surface devices [J].
Arzt, E ;
Enders, S ;
Gorb, S .
ZEITSCHRIFT FUR METALLKUNDE, 2002, 93 (05) :345-351
[3]   Mechanisms of adhesion in geckos [J].
Autumn, K ;
Peattie, AM .
INTEGRATIVE AND COMPARATIVE BIOLOGY, 2002, 42 (06) :1081-1090
[4]   Evidence for van der Waals adhesion in gecko setae [J].
Autumn, K ;
Sitti, M ;
Liang, YCA ;
Peattie, AM ;
Hansen, WR ;
Sponberg, S ;
Kenny, TW ;
Fearing, R ;
Israelachvili, JN ;
Full, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12252-12256
[5]   Adhesive force of a single gecko foot-hair [J].
Autumn, K ;
Liang, YA ;
Hsieh, ST ;
Zesch, W ;
Chan, WP ;
Kenny, TW ;
Fearing, R ;
Full, RJ .
NATURE, 2000, 405 (6787) :681-+
[6]   CALCULATION OF THERMAL NOISE IN ATOMIC-FORCE MICROSCOPY [J].
BUTT, HJ ;
JASCHKE, M .
NANOTECHNOLOGY, 1995, 6 (01) :1-7
[7]   Adhesive contact of cylindrical lens and a flat sheet [J].
Chaudhury, MK ;
Weaver, T ;
Hui, CY ;
Kramer, EJ .
JOURNAL OF APPLIED PHYSICS, 1996, 80 (01) :30-37
[8]   EFFECT OF CONTACT DEFORMATIONS ON ADHESION OF PARTICLES [J].
DERJAGUIN, BV ;
MULLER, VM ;
TOPOROV, YP .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1975, 53 (02) :314-326
[9]   Shape insensitive optimal adhesion of nanoscale fibrillar structures [J].
Gao, HJ ;
Yao, HM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (21) :7851-7856
[10]   Microfabricated adhesive mimicking gecko foot-hair [J].
Geim, AK ;
Dubonos, SV ;
Grigorieva, IV ;
Novoselov, KS ;
Zhukov, AA ;
Shapoval, SY .
NATURE MATERIALS, 2003, 2 (07) :461-463