Cutting angle methods in global optimization

被引:42
作者
Andramonov, M [1 ]
Rubinov, A [1 ]
Glover, B [1 ]
机构
[1] Univ Ballarat, Sch Informat Technol & Math Sci, Ballarat, Vic 3353, Australia
基金
澳大利亚研究理事会;
关键词
global optimization; abstract convexity; subdifferential; convex-along-rays; increasing; generalized cutting plane method; cutting angle method;
D O I
10.1016/S0893-9659(98)00179-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalization of the cutting plane method from convex minimization is proposed applicable to a very broad class of nonconvex global optimization problems. Convergence results are described along with details of the initial numerical implementation of the algorithms. In particular, we study minimization problems in which the objective function is increasing and convex-along-rays. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 10 条
[1]  
ABASOV TM, 1994, RUSSIAN ACAD SCI DOK, V48, P95
[2]  
Hiriart-Urruty J. B., 1993, CONVEX ANAL MINIMIZA
[3]  
Horst R, 1990, GLOBAL OPTIMIZATION, DOI DOI 10.1007/978-3-662-02598-7
[4]   THE CUTTING-PLANE METHOD FOR SOLVING CONVEX PROGRAMS [J].
KELLEY, JE .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1960, 8 (04) :703-712
[5]   AN ALGORITHM FOR FINDING THE GLOBAL MAXIMUM OF A MULTIMODAL, MULTIVARIATE FUNCTION [J].
MLADINEO, RH .
MATHEMATICAL PROGRAMMING, 1986, 34 (02) :188-200
[6]  
PALLASCHKE D, 1997, FDN MAT OPTIMIZATION
[7]  
Pinter J.D, 1996, GLOBAL OPTIMIZATION, DOI DOI 10.1007/978-1-4757-2502-5
[8]  
RUBINOV AM, 1995, J CONVEX ANAL, V2, P309
[9]  
RUBINOV AM, 1996, 2196 U BALL SCH INF
[10]   THE BISECTION METHOD IN HIGHER DIMENSIONS [J].
WOOD, GR .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :319-337